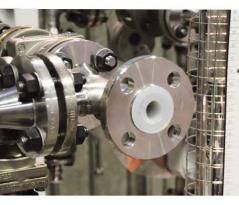


DIFLINE Catalogo Generale

ANSI

SINCE 1969

T AT GLANCE


PERCHÈ DIFLON?

L'applicazione dei prodotti fabbricati dalla Diflon Tecnology Srl è una scelta strategica, sicura e responsabile, grazie ai materiali tecnici di alta qualità certificati.

I prodotti finiti sono progettati presso i propri uffici tecnici con strumenti all'avanguardia e realizzati negli stablimenti di produzione Diflon in Italia.

Tutti i materiali sono fabbricati in conformità alla certificazione ISO 9001 seguendo le istruzioni del decreto 81/08 alla direttiva 97/23/CE (PED).

SERVIZI ADDIZIONALI

- Progettazione e realizzazione di rivestimenti speciali anticorrosivi in fluoropolimeri
 - Forniture di valvole industriali
 - Consulenza tecnica nella scelta dei materiali
 - Collaudi e certificazioni conformi alle specifiche dei clienti
 - Ingegneria di dettaglio e progettazione, liste materiali, assistenza al montaggio

DIFLON DAL 1969

Da più di 40 anni, Diflon Technology srl. Produzione diretta, nel proprio stablimento di Carobbio degli Angeli (BG) Italy:

- Tubazioni, raccordi, colonne e serbatoi rivestiti internamente in PTFE / PFA secondo norme DIN e ANSI per impieghi anticorrosivi. Tubi flessibili tecnici, raccordi e guarnizioni utilizzati per impieghi ad alte prestazioni nelle industrie chimiche, petrolchimiche, farmaceutiche, alimentari. Guarnizioni universali in Diflex.
- Compensatori in PTFE / *TFM*. Rivestimenti in PFA per conto terzi. Tutti i prodotti sono costruiti utilizzando le più moderne tecniche di produzione.

STRUTTURA DEI REPARTI DI PRODUZIONE

- Magazzini pezzi finiti, materie prime
- Macchine CNC automatiche
- · Reparti di taglio e saldatura
- Rivestimenti in PTFE/PFA di tubi, colonne e serbatoi
 - Sabbiatura
 - Verniciatura
 - · Stampaggio PFA transfer moulding
 - Stampaggio PTFE
 - Stampaggio compensatori di dilatazione in TFM / PTFE
 - Produzione tubi Flessibili e raccordi
 - Guarnizioni industriali

Prefazione al catalogo DIFLINE

DIFLINE

CATALOGO GENERALE

Il catalogo generale DIFLINE DIN è la panoramica generale di tubi, raccordi e pescanti in acciaio con connessioni flangiate, rivestiti internamente con fluoropolimeri PTFE, TFM, PFA. Costruiti, collaudati, certificati e tracciati secondo i più importanti standard internazionali.

UTILIZZO DEL CATALOGO

Il catalogo generale Difline è suddiviso in 5 sezioni: A - A1 - A2 - A3 - A4

- A Tubi e raccordi rivestiti in PTFE PFA
- A1 Specifiche tecniche costruttive
- A2 Schede tecniche di tubazioni e raccordi
- A3 Filtro ad Y e Spia visiva
- A4 Specifiche costruttive

SIMBOLOGIA:

Nelle pagine dei cataloghi troverete il simbolo che vi riporta all'indice della sezione scelta

Cliccando sulla copertina dei cataloghi si accede direttamente all'argomento di'interesse.

Informazioni Tecniche aggiuntive di interesse generale.

SERVIZI DIFLON:

Cliccando sul simbolo a lato di ogni scheda si accede alle tabelle di resistenza chimica dei materiali.

DIFLINE

TUBI E RACCORDI IN ACCIAIO FLANGIATI RIVESTITI INTERNAMENTE IN PTFE - PFA

TUBI E RACCORDI RIVESITI IN PTFE - PFA

Tubazioni e raccordi in acciaio al carbonio o inox rivestiti internamente in PTFE - PFA.

Dal 1/2" a 12" ANSI.

Per impianti chimici, petrolchimici e farmaceutici.

Pulizia e sicurezza nel tempo.

INDICE

Introduzione

A-06

- Campo di fornitura e impiego
- Qualità, prove e certificazioni
- Finitura, marcatura e imballo
- Specifiche tecniche dei fluoropolim eri utilizzati per i rivestimenti interni delle parti in acciaio
 - PTFE vergine
 - PFA
 - Static dissipating PTFE
 - Static dissipating PFA

DIFLINE

ANSI

CATALOGO INTRODUZIONE AI PRODOTTI DIFLINE

Questo catalogo e le tabelle annesse vogliono essere una introduzione ed una guida tecnica per coloro che intendono trovare nei prodotti DIFLINE la soluzione a problemi di corrosione, contaminazione e sicurezza dei propri dei propri prodotti, adottando ed equipaggiando i propri impianti con un sistema di tubazioni e raccorderia in acciaio flangiata completamente rivestita in PTFE / PFA vergine o antistatico e sfruttando cosi le eccezionali caratteristiche dei fluoropolimeri. Così il cliente effettuerà non solo un acquisto ma un investimento in qualita, sicurezza e durata nel tempo degli impianti.

NOTE

I dati ed i materiali i citati nelle tabelle possono subire variazioni nel tempo, quindi il catalogo ha un carattere di indicazione generale e non costituisce una garanzia.

Per richieste specifiche di resistenza meccanica, compatibilità chimica, temperatura o condizioni di esercizio particolari vi preghiamo di contattare il nostro ufficio tecnico.

Per richieste di conformità a norme, specifiche e tolleranze vi preghiamo di contattare il nostro ufficio tecnico.

CARATTERISTICHE DEI PRODOTTI DIFLINE

Il piping DIFLINE è costituito da tubi e raccordi in acciaio flangiati a norma DIN 2848 per il mercato europeo, ANSI F1545 per il mercato anglosassone. Il rivestimento interno è costituito da fluoropolimeri come, PTFE vergine, PTFE antistatico , PFA vergine ,PFA antistatico, PVDF ed anche Polipropilene. Questo lo rende un sistema di tubazioni completamente anticorrosivo, antiacido e idoneo al trasporto degli alimenti e prodotti chimici e farmaceutici: i vostri prodotti saranno a contatto unicamente con esso.

REALIZZAZIONE DELLE PARTI METALLICHE

Diflon presta particolare attenzione alla realizzazione dei manufatti metallici. Tutto il personale dei reparti ed i procedimenti sono certificati con il TUV sud. Il reparto saldatura è equipaggiato con macchinari di saldatura molto performanti che garantiscono, insieme all'officina meccanica per la preparazione dei componenti, la perfetta esecuzione nel rispetto dei disegni e delle specifiche più restrittive. Diflon si avvale, inoltre, di uno stock di componenti realizzati in microfusione a cera che le consentono di avere consegne più rapide sugli standard dimensionali più utilizzati dal mercato.

ALL' AVANGUARDIA NELLA TECNICA DELLO STAMPAGGIO DEI FLUOROPOLIMERI

- nello stampaggio del PFA, del PVDF e del Polipropilene viene utilizzata la tecnica del transfer moulding con macchinari di ultima generazione controllati da sofisticati software PLC. Siamo in grado di stampare anche particolari di grosse dimensioni.
- Per lo stampaggio del PTFE utilizziamo delle presse isostatiche di grosse dimensioni in grado di raggiungere 400 bar di pressione e forni di sinterizzazione.
- Alla fine dei processi di stampaggio tutti i manufatti sono controllati con poroscopio ed ultrasuoni per controllare eventuali cricche o porosità nel rivestimento.
- Gli spessori del rivestimento vengono monitorati utilizzando spessimetri ad ultrasuoni

vista precedente

CAMPO DI FORNITURA E DI IMPIEGO

Programma standard di fornitura

Il programma standard di fornitura Diflon che riguarda la linea di produzione Difline comprende tubazioni e raccordi in acciaio rivestito internamente in PTFE e PFA dal DN 15 al DN 500, per lunghezze di tubazioni STD fino 3 m con possibilità di realizzarle anche da 6 m. Il loro campo di impiego continuo è compreso fra -29°C e + 250°C. Per temperature sotto i -29°C è possibile approntare tubazioni in accaio grado 6 per basse temperature.

Per ambienti particolari, dove richiesto, si forniscono parti metalliche costruite completamente in acciaio INOX.

Nell'esecuzione standard (ANSI 150) e a temperature ambiente i prodotti della linea Difline sono consigliati per un utilizzo non superiore a 19,5 bar. Per pressioni superiori vengono approntate su richiesta, tubazioni e raccordi ANSI 300.

I componenti per impianti Difline possiedono un'elevata resistenza al vuoto. Per condizioni di vuoto assoluto vengono approntate su richiesta tubazioni e raccordi in esecuzione "HD" (vedi tabella 1). Le straordinarie caratteristiche del PTFEe PFA utilizzato normalmente dalla società Diflon, consentono l'impiego dei componenti per impiantistica Difline, sulla quasi totalità dei fluidi; la propria caratteristica viene esaltata soprattutto nel convogliare sostanze altamente aggressive quali l'acido cloridrico, fluoridrico, nitrico, solforico fumante, ecc.

Il PTFE non è raccomandato nell'utilizzo con metalli alcalini, clorotrifloruro e fluoro elementare (ad alta temperatura e pressione).

🕽 QUALITÀ, PROVE E CERTIFICAZIONI

Controlli, collaudi e certificazioni

La DIFLON TECHNOLOGY è una società certificata ISO 9001:2008 e tutti i prodotti rispondono alla normativa PED 97/23 CF.

La DIFLON TECHNOLOGY garantisce un accurato controllo di ogni suo prodotto con i seguenti collaudi:

- Poroscopio da 5000 a 50000 V
- · Prova idraulica fino a 80 bar
- Controlli non distruttivi: radiografie, liquidi penentranti, controllo magnetoscopico
- . PMI
- Ferroxyl test
- . Altri test a richiesta

Controllo di qualità dei manufatti e certificati

Fanno parte dei controlli (non distruttivi) effettuati sui prodotti per impiantistica DIFLON:

- proprietà fisiche del PTFE
- proprietà fisiche e chimiche dell'acciaio utilizzato
- · controllo dimensionale dei manufatti
- controllo delle tolleranze di lavorazione
- simulazione dei limiti di impiego previsti
- controllo con scintillometro a 15000 V sul 100% delle parti in PTFE lavorate.

Normalmente i controlli sopracitati sono effettuati a "spot"; su specifica richiesta essi possono essere estesi a tutti i componenti facenti parte di una fornitura. Infine, sempre su incarico, possono essere effettuate prove distruttive per la determinazione di condizioni limite di impiego dei componenti. Vengono forniti a richiesta certificati delle prove eseguite e dei materiali impiegati secondo EN 10204 - 2.2 o 3.1,32.

vista precedente

FINITURA, MARCATURA, IMBALLO E MONTAGGIO

Preparazione finale delle superfici e verniciatura

Le superfici in acciaio vengono normalmente trattate con spazzolatura

ed una mano di antiruggine a base epossidica. Su richiesta possono anche essere effettuate le seguenti operazioni aggiuntive:

- sabbiatura, grado SA2 1/2
- applicazione di una, due o tre mani di smalto epossidico, nel colore richiesto applicazioni di vernici zincanti.

Protezione per trasporto e stoccaggio

Tutti i componenti per impiantistica costruiti da Diflon sono forniti o completi di protezioni, in plastica o in precompresso, sulle cartelle in corrispondenza delle flangiature, per proteggerle durante il trasporto e per tutto il periodo di stoccaggio, in attesa di utilizzo.

Le protezioni devono essere rimosse solo immediatamente prima del montaggio con gli altri componenti. L'eventuale danneggiamento, per urto, della superficie di tenuta sulla flangia può compromettere l'utilizzo dell'intero pezzo.

Istruzioni per assiemaggio e montaggio di apparecchiature, tubazioni e raccorderia in acciaio rivestito in PTFE - Difline

Il montaggio delle tubazioni rivestite in PTFE prodotte da Diflon non richiede particolari attrezzature; devono comunque essere rispettate alcune regole fondamentali, necessarie per consentire un utilizzo ottimale di tutti i componenti.

- Effettuare un rilievo accurato in loco delle misure relative alle tubazioni da costruire; si eviteranno adattamenti e soluzioni di ripiego, non idonei al servizio a cui le tubazioni sono destinate.
- Utilizzare dove possibile, pezzi standard; ne risulterà facilitata ad un eventuale sostituzione.
- Prevedere, dove possibile, supporti e staffaggi regolabili; si eviteranno inutili tensioni alle tubazioni sia durante il montaggio sia durante l'esercizio, dovute all'imprecisione o al non perfetto allineamento degli staffaggi.
- Non cercare di adattare le tubazioni forzandole; si otterrà solamente una tenuta precaria degli accoppiamenti flangiati. Per eventuali adattamenti utilizzare gli spessori in PTFE massiccio.
- Non effettuare saldature sui componenti in acciaio rivestiti in PTFE, seguendo il metodo tradizionale; il rivestimento ne verrebbe irrimediabilmente compromesso.
- Non inserire alcun tipo di mastice, sigillante o adesivo, tra le flangiature; ne risulterebbe compromessa la tenuta e l'integrità dei componenti.
- È consigliabile, per gli accoppiamenti flangiati, l'utilizzo di una chiave dinamometrica; si otterrà una pressione di serraggio uniformemente distribuita su tutta la superficie di tenuta.
- Consigliamo di adottare guarnizioni in Diflex sugli accoppiamenti per salvaguardare le cartelle da eventuali serraggi non corretti.

vista precedente

Proprietà del PTFE

PTFE

Il Politetrafluoroetilene (PTFE) è una materia plastica ottenuta per polimerizzazione del tetrafluoroetilene (CF4), ottenuto a sua volta dalla pirolisi del difluoroclorometano (CH C1 F2). L'invenzione del PTFE è datata 1938 ed è dovuta all'americano Plunkett, l'inizio della sua diffusione avviene negli anni '50, mentre la produzione su larga scala parte dagli anni '60. L'insieme delle elevate caratteristiche che contraddistingue il PTFE, ne ha decretato il successo rendendolo un prodotto unico:

1. Caratteristiche del PTFE

Il politetrafluoroetilene (PTFE), è un polimero del tetrafluoroetilene che possiede un insieme di caratteristiche fisico chimiche non riscontrate in nessun altro materiale plastico.

Tra tali caratteristiche le principali sono:

- estrema inerzia chimica
- eccellente resistenza al calore
- ottime caratteristiche dielettriche
- · ottima resistenza all'invecchiamento
- caratteristiche autolubrificanti e minimo coefficiente di attrito
- · impermeabilità.

2. Proprietà chimiche

Il PTFE è inerte nei confronti di praticamente tutti i reagenti chimici noti; esso viene attaccato solo dai metalli alcalini allo stato elementare ad alta temperatura e pressione.

Il PTFE è insolubile in gualsiasi solvente a temperatura fino a 300°C. Solo a temperature prossime al punto di fusione cristallino alcuni olii altamente fluorurati possono rigonfiarlo e scioglierlo.

3. Proprietà termiche

Il PTFE ha un basso coefficiente di trasmissione termica ed è perciò considerato un isolante termico. Non è infiammabile ed è stabile per tempi indeterminatamente lunghi fino a 260°C.

4. Proprietà elettriche

Il PTFE possiede ottime qualità dielettriche in un ampio campo di temperature e freguenze. Essendo l'assorbimento d'acqua praticamente nullo, le caratteristiche si mantengono invariate anche dopo prolungate esposizioni agli agenti atmosferici. La rigidità dielettrica non è praticamente influenzata dalla temperatura di esercizio.

La resistenza all'arco è notevole e l'azione dell'arco non provoca depositi carboniosi ma soltanto vapori non conduttori. Anche le altre proprietà elettriche (costante dielettrica, resistività superficiale, resistività di volume, fattore di potenza ecc.) sono particolarmente interessanti.

5. Proprietà meccaniche

Le proprietà meccaniche del PTFE riferite alla temperatura di 23°C sono indicate nella tabella seguente. E' importante osservare che alle temperature comprese tra i 19°C ed i 21°C, il materiale presenta un punto di transizione, determinato da una modifica nella struttura cristallina, che provoca una variazione di volume di circa l'1%.

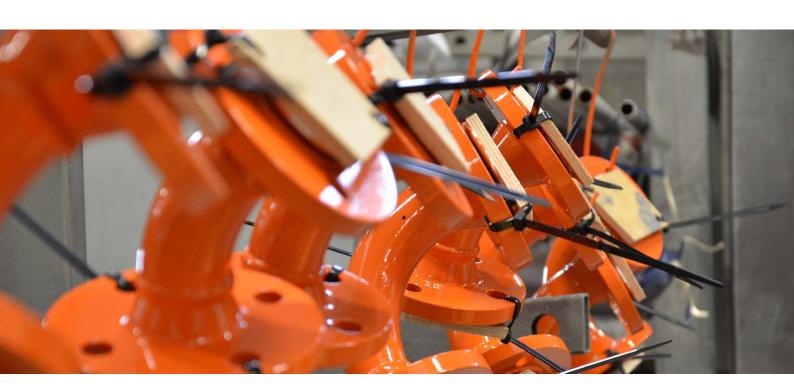
Altre caratteristiche peculiari del PTFE sono l'antiadesività ed il basso coefficiente di atrito, in particolare con carichi abbastanza elevati.

6. Caratteristiche generali del PTFE stampato

Le caratteristiche generali del PTFE sono espresse nella seguente tabella.

Specifiche tecniche PTFE

Caratteristiche	Metodo	Unità di misura	Valori
Peso specifico	ISO 1183	-	2,130 - 2,180
Carico di rottura a trazione	ISO 527	MPa	20 - 30
Allungamento	ISO 527	%	200 - 350
Durezza	ISO 868	Shore D	54 - 60
Modulo di elasticità	23°C	N/mm²	600 - 700
Deformazione sotto carico (140 kg/cm² per 24 hr a 23°C)	ASTM D695	%	10 - 13
Deformazione permanente (dopo 24 hr - Rilassamento a 23°C)	ASTM D695	%	6 - 7,5
Coefficiente di atrito	ASTM D1894	/	Dynamic 0,07
Costante dielettrica a 60 Hz da 2GHz	ASTM D150	/	2,1
Rigidità dielettrica	ASTM D149	kV/mm	20 -70
Resistività volumetrica	ASTM D275	Ohm cm	1018
Infiammabilità	UL 94	%	VE-0
Punto di fusione		°C	325 - 335
Assorbimento all'acqua	ASTM D570	%	0,01



Specifiche tecniche PTFE antistatico 1,2% CSC

Proprietà	Metodo	Unità di misura	Valori
Gravità specifica	ASTM D792	g/cm ³	2,140 - 2,170
Resistenza alla tratione	ASTM D4894	MPa	> 22
Allungamento	ASTM D4894	%	> 250
Durezza	ASTM D2240	Shore D	> 60
Coefficente di frizione statica	ASTM D1894		0.08 - 0.10
Coefficente di frizione dinamica	ASTM D1894		0.06 - 0.08
Resistività del volume	ASTM D257	Ohm cm	10 4
Resistenza di superficie	ASTM D257	Ohm	10 ³
Invecchiamento e resistenza agli agenti atmosferici		Stable over 20 y	rears of exposure
Temperatura di servizio		C°	-200/ +260

vista precedente

Proprietà del PFA

FluoroAlkoxy alkanes (PFA) è un fluoroplastico. È prodotto dalla copolimerizzazione di tetraefluoroetilene (C2F4) e perfluoroeteri (CF2F3ORf). In termini di proprietà, questo polimero è simile al politetrafluoroetilene (PTFE). La grande differenza è che i sostituenti alcossilici consentono al polimero di essere fuso.

Il PFA è processabile mediante fusione mediante metodi di lavorazione termoplastici convenzionali, inclusi stampaggio per iniezione, trasferimento, soffiaggio e compressione e per estrusione.

È un materiale termoplastico relativamente morbido con minore resistenza a trazione e resistenza allo scorrimento viscoso rispetto a molti altri tecnopolimeri.

Chimicamente è inerte e ha una bassa costante dielettrica su un'ampia gamma di frequenze.

Il PFA viene utilizzato quando è richiesto un servizio esteso in ambienti ostili che comportano stress chimici, termici e meccanici. Il PFA offre un'elevata resistenza allo scioglimento, stabilità alle alte temperature di lavorazione, eccellente resistenza alle incrinature e alle sollecitazioni, basso coefficiente di attrito.

Ha un'elevata resistenza allo scorrimento e alla ritenzione delle proprietà dopo il servizio a 260 ° C (500 ° F). PFA soddisfa anche FDA 21CFR.177.1550.

Il PFA ha un'elevata trasparenza (con una buona trasmittanza di UltraViolet e lunghezze d'onda visibili).

Ha una resistenza agli agenti atmosferici a lungo termine e un'eccellente resistenza all'ozono, alla luce solare e alle intemperie.

Importanti applicazioni sono rivestimenti per raccordi e apparecchiature per trattamenti chimici aggressivi e corrosivi.

Caratteristiche speciali

- Ampio intervallo di temperature di servizio
- Resistenza agli agenti atmosferici estremamente elevata e stabilità ai raggi UV
- Alto indice di ossigeno limitante: non supporta la combustione
- Buone caratteristiche antiaderenti
- Ampia finestra di elaborazione
- Migliore proprietà di rilascio dello stampo
- Alta trasparenza •
- Eccellente resistenza quasi universale a solventi e sostanze chimiche
- Eccellenti proprietà di isolamento elettrico, ad esempio: rigidità dielettrica, costante dielettrica
- Superfici lisce
- Buone proprietà a basso attrito
- Proprietà di resistenza alle incrinature da stress migliorate

Specifiche tecniche PFA – Perfluoroalkoxy

Property	Method	Units	Specification
Specific Gravity	DIN EN ISO 12086	g/cm³	2.15
Melting Point	DIN EN ISO 12086	°C	308
Melt Flow Index (372 °C/5 kg)	DIN EN ISO 1133	g/10 min	2
Limiting Oxygen Index (LOI)	ASTM D2863	%	> 95
Hardness Shore D	ASTM D2240/ISO 868	-	60
Tensile Strength at Break (23 °C)	ASTM D638	MPa	34
Elongation at Break (23 °C)	DIN EN ISO 527-1	%	360
Flexural Modulus	DIN EN ISO 527-1	MPa	550
MIT Folding Endurance (200 μ m film)	ASTM D 2176	double folds	3.1 Mio.

vista precedente

Specifica tecnica PFA ANTISTATICO

Il PFA fluoroplastico è un composto fluorotermoplastico dissipativo elettrostatico costituito da un polimero di base PFA completamente fluorurato e un nerofumo elettroconduttivo.

Il prodotto è stato specificamente sviluppato per lo stampaggio a trasferimento.

Caratteristiche speciali

- Dissipazione elettrostatica
- Elaborazione: stampaggio per trasferimento
- Ampia gamma di temperature di servizio fino a 240 ° C

Proprietà Metodo di prova Unità Valore *

Proprietà tipiche

Composto di fluoroplastica PFA che è elettrostaticamente dissipativo.

Usi tipici

Fluoroplastic PFA, è un materiale ad alta viscosità e viene utilizzato in processi a basso taglio.

Il PFA fluoroplastico è stato specificamente sviluppato per il transfermodellamento, quando è richiesto un prodotto elettrostaticamente dissipativo.

Property	Method	Units	Specification
Specific Gravity	DIN EN ISO 12086	g/cm³	2.11
Melting Point	DIN EN ISO 12086	°C	278
Melt Flow Index (372 °C/5 kg)	DIN EN ISO 1133	g/10 min	2
Tensile Strength at Break (23 °C)	ASTM D638	MPa	30
Elongation at Break (23 °C)	DIN EN ISO 527-1	%	290
Volume Resistivity	DIN ICE93	Ohm x cm	<10.000

vista precedente

SPECIFICHE TECNICHE COSTRUTTIVE DI TUBI E RACCORDI DIFLINE A NORMA B 16.5 ANSI 150

TUBI E RACCORDI RIVESITI IN: PTFE - PFA

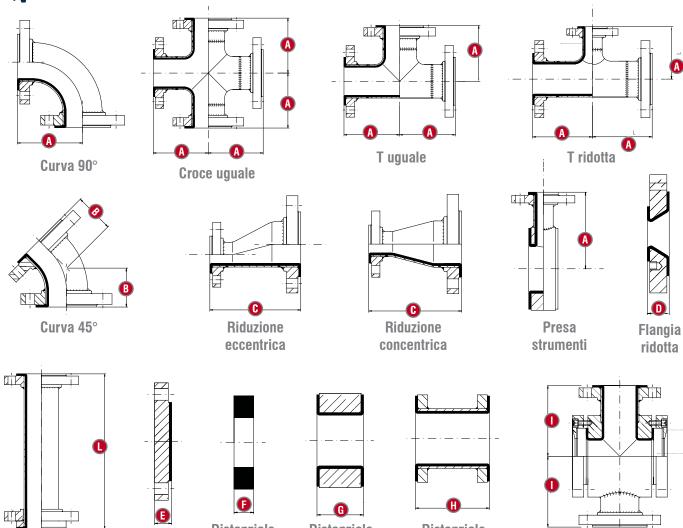
Tubazioni e raccordi in acciaio al carbonio o inox 304L / 316L rivestiti internamente in PTFE - M TOPSEAL - PFA vergine e antistatico. Da DN 1/2" a DN 12" ANSI 150.

Per impianti chimici, petrolchimici e farmaceutico.

Pulizia e sicurezza nel tempo.

INDICE

- Dimensione raccordi e componenti ASME B16.5 Classe 150 A1-21
- Dimensioni tubi metallici schedulati
- Tabelle forza serraggio raccomandata
- Resistenza al vuoto di tubi e raccordi in accaio al carbonio
- Dimensioni tubi e flange per tubazioni e raccordi rivestiti in PTFE - PFA



vista precedente

DIMENSIONE RACCORDI E COMPONENTI - ASME B16.5 CLASSE 150

Tubi		Flangia Cieca	Tip	00 F	Tipo	G	Tipo	Н		Spia \	/isiva
NB	A	В	С	D	Е	F	G	Н			_
inch		Ь	U	U	<u> </u>	max.	max.	max.		Min.	Max
1/2"	65				14	25	60	100		90	3000
3/4"	75			30	15	25	60	100		90	3000
1"	89	44		30	16	25	60	100	89	90	3000
1 1/2"	102	57	114	30	19	25	60	100	102	95	3000
2"	114	63	127	30	21	25	70	150	114	110	3000
3"	140	76	152	35	26	25	70	150	140	120	3000
4"	165	102	178	35	26	25	70	150	165	125	3000
6"	203	127	229	40	27	25	80	150	203	140	3000
8"	229	140	279	40	31	25	80	200	229	150	3000
10"	279	165	305	35	31	25	80	200	280	165	3000
12"	305	190	356	40	34	25	80	200	305	170	3000

Distanziale

Distanziale

Distanziale

Flangia

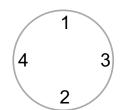
Tubi

DIMENSIONE TUBI METALLICI SCHEDULATI

Tutte le tubazioni utilizzate da DIFLON sono dimensionalmente conformi a ASME B36.1 / API 5L Il foro nominale è liberamente correlato all'i / d del tubo, ci sono diversi spessori di parete o programmi disponibili per ogni dimensione, l'o / d rimane costante per ogni NB, più è pesante il programma di tubi più piccolo è il foro.

NB	DN	OD (mm)		Pipe Schedule					
inch	mm		SCH 5	SCH 10	SCH 20	SCH 30	SCH 40	SCH 60	SCH 80
3/4"	20	26.67	1.65	2.11	Х	2.41	2.87	Х	3.91
1"	25	33.40	1.65	2.77	Х	2.90	3.38	Χ	4.55
1.1/2"	40	48.26	1.65	2.77	Х	3.18	3.68	Χ	5.08
2"	50	60.32	1.65	2.77	Χ	Χ	3.91	Χ	5.54
2.1/2"	65	73.02	2.11	3.05	X	Χ	5.16	Χ	7.01
3"	80	88.9	2.11	3.05	Х	Χ	5.49	Χ	7.62
4"	100	114.3	2.11	3.05	Х	Χ	6.02	Χ	8.56
5"	125	141.3	5.77	3.4	Х	Χ	6.55	Χ	9.53
6"	150	168.27	2.77	3.4	Х	Χ	7.11	Χ	10.97
8"	200	219.07	2.77	3.76	6.35	7.04	8.18	12.7	12.70
10"	250	273.05	3.4	4.19	6.35	7.8	9.27	12.7	15.06
12"	300	323.85	4.19	4.57	6.35	8.38	10.31	12.7	17.45

vista precedente



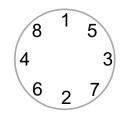


TABELLE FORZA DI SERRAGGIO RACCOMANDATA

Tubi e raccordi rivestiti.

I materiali di bullonatura devono essere di buona qualità, puliti e ben lubrificati e conformi allo standard del sito. Si consiglia l'uso di rondelle per garantire una coppia di serraggio corretta. I bulloni devono essere serrati a mano e quindi serrati mediante l'uso di una chiave dinamometrica in stretta seguenza di coppie diagonalmente opposte. Questo e tutti i successivi bulloni devono essere eseguiti a temperatura ambiente.

* I bulloni di serraggio sono diagonalmente opposti l'uno all'altro in coppia Si noti che il PTFE è soggetto a flusso freddo o "strisciamento". Pertanto, si consiglia vivamente di ripetere il ciclo di tutte le viti almeno 24 ore dopo la messa in servizio o dopo il ciclo di processo completo iniziale. La coppia di tutti i giunti bullonati dovrebbe quindi essere ricontrollata almeno una volta all'anno.

	S. -	150	S. 300			
DN	n° bulloni x filettatura	Forza serraggio FT/LBS	n° bulloni x filettatura	Forza serraggio T/LBS		
1/2"	4 x 1/2"	10	4 x 1/2"	12		
3/4"	4 x 1/2"	10	4 x 5/8"	12		
1"	4 x 1/2"	10	4 x 5/8"	12		
1"1/2	4 x 1/2"	15	4 x 3/4"	16		
2"	4 x 1/2"	25	8 x 5/8"	19		
2"1/2	4 x 5/8"	33	8 x 3/4"	29		
3"	4 x 5/8"	40	8 x 3/4"	33		
4"	8 x 5/8"	30	8 x 3/4"	47		
5"	8 x 3/4"	45	8 x 3/4"	69		
6"	8 x 3/4"	60	12 x 3/4"	73		
8"	8 x 3/4"	75	12 x 7/8"	76		
10"	12 x 7/8"	70	16 x 1"	83		
12"	12 x 7/8"	90	16 x 1"/8"	87		

Informazioni Tecniche

TABELLE FORZA DI SERRAGGIO RACCOMANDATA

I valori di coppia sopra riportati sono una guida; possono essere superati di un valore del 50% per effettuare un sigillo. Se una volta raggiunto questo livello di coppia non è stato raggiunto un sigillo, è probabile che ci sia un'altra causa. Ciò può essere dovuto a disallineamento o tensione delle articolazioni, oppure può essere che la faccia della torcia PTFE abbia subito danni meccanici.

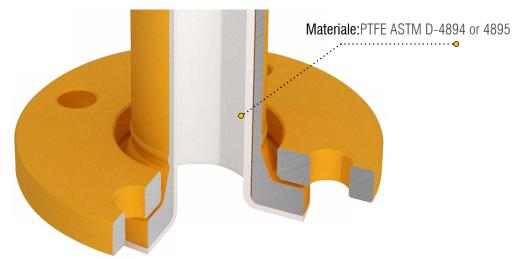
Piccoli graffi possono essere rimossi con l'uso di un abrasivo fine senza detrimento.

Se il danno è significativo, il serraggio eccessivo non è una soluzione e il componente deve essere rifiutato.

RESISTENZA AL VUOTO DEI TUBI E RACCORDI IN ACCIAIO AL **CARBONIO RIV. PTFE**

			Temperatura ° C							
			Spessore PTFE: STD=Standard HD=Maggiorato							
DN		23	°C	100	D°C	150)°C	200)°C	
	Pollici / <i>Inch</i>	STD	HD	STD	HD	STD	HD	STD	HD	
15	1/2"	0	0	0	0	0	0	0	0	
20	3/4"	0	0	0	0	0	0	0	0	
25	1"	0	0	0	0	0	0	0	0	
32	1"1/4	0	0	0	0	0	0	0	0	
40	1"1/2	0	0	0	0	0	0	0	0	
50	2"	0	0	0	0	0	0	0	0	
65	2"1/2	0	0	0	0	0	0	0	0	
80	3"	0	0	0	0	0	0	0	0	
100	4"	10^{4}	0	1,5 x 10 ⁴	0	3 x 10 ⁴	0	3,5 x 10 ⁴	0	
125	5"	1,5 x 10 ⁴	0	2,5 x 10 ⁴	0	3,5 x 10 ⁴	0	4,5 x 10 ⁴	0	
150	6"	1,5 x 10 ⁴	0	2,5 x 10 ⁴	0	3,5 x10 ⁴	0	4,5 x 10 ⁴	0	
200	8"	2 x 10 ⁴	0	8 x 10 ⁴	0	9,5 x 10 ⁴	0	105	0	
250	10"	5 x 10 ⁴	0	9,5 x 10 ⁴	0	10 ⁵	0	10 ⁵	0	
300	12"	8 x 10 ⁴	0	9,5 x 10 ⁴	0	10 ⁵	0	10 ⁵	0	

vista precedente



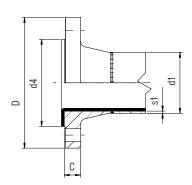
DIMENSIONI TUBI E FLANGE E RACCORDI RIVESTITI IN PTFE

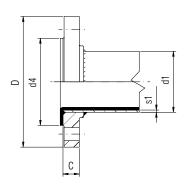
Esempio n.1 Sezione di tubo rivestito in PTFE con connessione flangiata tipo welding neck saldata

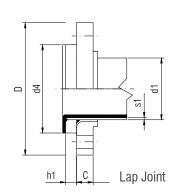
Esempio n.2 Sezione di tubo rivestito in PTFE con collarino saldato di testa e flangia lap joint

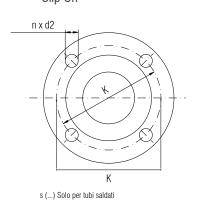
Fornitura standard

- ASME B16.5 Classe 150
- . DN 1/2" DN 24"
- . Tubi: ASME B36.10
- . Flange: ASME B16.5
- Classe 150
- Raccordi: ASME B16.9






DIMENSIONI TUBI E FLANGE E RACCORDI RIVESTITI IN PTFE



Welding Neck

Slip On

	,					1	,		
DN	D	К	d4	n	d2	С	h1	d1 x s1	Viti/ <i>Bolt</i> s
1/2"	88,9	60,3	35	4	15,9	12	11,1	26,9 x 2,9	1/2"
3/4"	98,4	69,8	43	4	15,9	12	12,7	26,9 x 2,9	1/2"
1"	107,9	79,4	51	4	15,9	12	14,3	33,7 x 3,38	1/2"
1 1/4"	117,5	88,9	64	4	15,9	12	15,9	42,4 x 3,56	1/2"
1 1/2"	127,0	98,4	73	4	15,9	12	17,5	48,3 x 3,68	1/2"
2"	152,4	120,6	92	4	19,0	14	19	60,3 x 3,91	5/8"
2 1/2"	177,8	139,7	105	4	19,0	14	22,2	73 x 5,16	5/8"
3"	190,5	152,4	127	4	19,0	16	23,8	88,9 x 5,16	5/8"
4"	228,6	190,5	157	8	19,0	16	23,8	114,3 x 6,02	5/8"
5"	254,0	215,9	186	8	22,2	18	23,8	141,3 x 6,55	3/4"
6"	279,4	241,3	216	8	22,2	18	25,5	168,3 x 7,11	3/4"
8"	342,9	298,4	270	8	22,2	20	28,6	219,1 x 6,4	3/4"
10"	406,4	361,9	324	12	25,4	22	30,2	273,0 x 6,4	7/8"
12"	482,6	431,8	381	12	25,4	22	31,7	323,9 x 7,1	7/8"
14"	533,4	476,2	412	12	28,6	22	34,9	355,6 x 7,9	1"
16"	596,9	539,7	470	16	28,6	24	36,5	406,4 x 7,9	1"
18"	635,0	577,8	533	16	31,7	24	39,7	457,2x7,9	1 1/18"
20"	698,5	635,0	585	20	31,7	26	42,9	508,0 x 9,5	1 1/18"
24"	812,8	749,3	692	20	34,9	26	47,6	610,0x9,5	1 1/4"

Indice vista precedente

TUBAZIONI E RACCORDI IN ACCIAIO RIVESTITO INTERNAMENTE IN PTFE

TUBAZIONI E RACCORDI

Tubazioni e raccordi in acciaio al carbonio o inox rivestiti internamente in PTFF.

Standard da DN 1/2" A DN 12".

Per impianti chimici, petrolchimici e farmaceutico.

Pulizia e sicurezza nel tempo.

INDICE

• Tubi in acciaio rivestiti internamente in PTFE

A2-29

• Curve a 90° in acciaio rivestite internamente in PTFE

A2-31

• Curve a 45° in acciaio rivestite internamente in PTFE

• T uguali in acciaio rivestite internamente in PTFE - PFA

T ridotte in acciaio rivestite internamente in PTFE - PFA

A2	DIFLINE	vista precedente

50	Croci uguali in acciaio rivestite internamente in PTFE - PFA	A2-40
1	Prese strumenti in acciaio rivestite internamente in PTFE - PFA	A2-42
	• Flange ridotte in acciaio rivestite internamente in PTFE - PFA	A2-45
0	Flange cieche in acciaio rivestite in PTFE	A2-45
Ī	Riduzioni concentriche in acciaio rivestite internamente in PTFE	- PF/ A2-5
Ī	Riduzioni eccentriche in acciaio rivestite internamente in PTFE	-PFA <i>A2-5</i> 4
0	Distanziali in acciaio tipo F rivestiti in PTFE	A2-5
	Distanziali in acciaio tipo G rivestiti in PTFE	A2-5
T	Distanziali in acciaio tipo H rivestiti in PTFE	A2-6.
	Dischi in acciaio a otto rivestiti in PTFE	A2-63
	Convogliatori in acciaio rivestiti in PTFE	A2-65
-	Pescanti in acciaio rivestiti internamente ed esternamente in P1	ΓFE <i>A2-6</i> 2

ANSI

indice

vista precedente

DIFLINE

TUBI IN ACCIAIO RIVESTITI INTERNAMENTE IN PTFE **DESIGN ASME B16.5 CLASSE 150**

Fornitura Standard

Design:

ASME/ANSI B16.5 Classe 150

Flange: 1 fissa + 1 libera

Range Misura:

DN 1/2" - DN 20"

Parti metalliche:

corpo: ASTM A 106 GR flange: ASTM A 105 collare: ASTM A 105

Rivestimento interno:

◆ PTFE

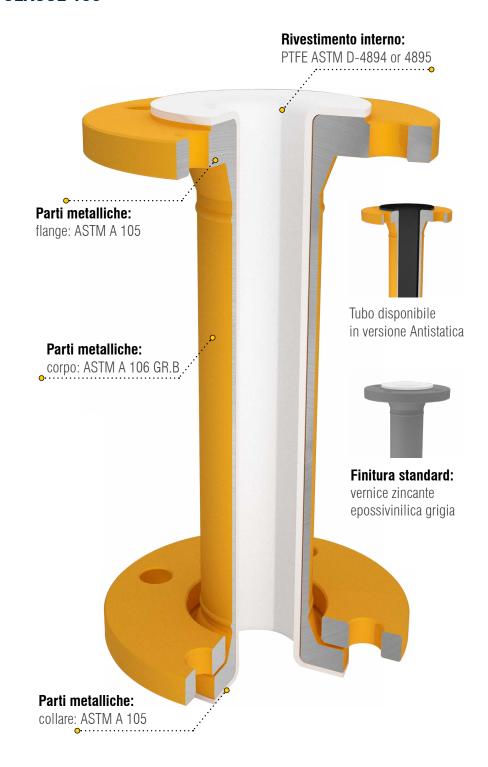
Varianti

Design:

ASME/ANSI B16.5 Classe 300

Flange: 2 libere

Lunghezza: fino a 6 m


Parti metalliche:

Acciaio Inox 304L/316L

Acc. per basse temp. P275NL

Rivestimento interno:

TFE antistatico

Fornibili a richiesta

Omologazioni e Certificazioni

Qualità e collaudi speciali

Servizi di ingegnieria

Forniture speciali

Parti metalliche Inox 304/316L

Finitura Superfici

■ TUBI IN ACCAIO RIVESTITI INTERNAMENTE IN PTFE DESIGN ASME B16.5 CLASSE 150

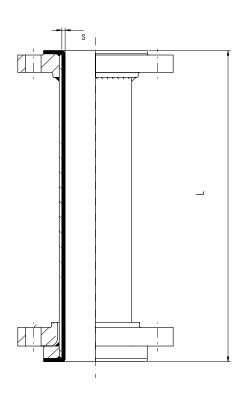


Tabella dimensionale

ianciia uiiiiciisiviiaic									
DN	L min. mm	L max. mm	s	Peso tubo ca. kg/m	Peso 2 flange				
1/2"	100	3000	3	1,2	1,5				
3/4"	100	3000	3	1,6	2				
1"	100	3000	3,0	2,5	2,5				
1 1/4"	100	3000	3,5	3,4	3,6				
1 1/2"	100	3000	3,5	4,5	4,2				
2"	100	3000	4,0	5,8	5,5				
2 1/2"	120	3000	4,5	7,1	6,6				
3"	120	3000	5,0	10	8,3				
4"	120	3000	5,5	14	9,9				
5"	120	3000	5,5	17,5	13,2				
6"	150	3000	6	23,5	16				
8"	150	3000	6,5	39	23				
10"	150	3000	6,5	55,5	31				
12"	200	3000	7	74	39				
14"	200	3000	7	85	52				
16"	200	3000	7	102	67				
18"	200	3000	7	130	85				
20"	250	-	7	155	90				
24"	250	-	7	204	116				

Specifiche Tecniche dei prodotti Difline

Dimensioni tubi e flange secondo ASME B16.5 Classe 150

Dimensioni raccordi secondo ASME B16.5 Classe 150

Condizioni operative

Forza Serraggio

Finitura Marcatura Imballo

Tabella delle resistenze chimiche dei materiali*

Parti metalliche: flage: ASTM A 150

CURVA A 90° IN ACCIAIO RIVESTITA INTERNAMENTE IN PTFE **DESIGN ASME B16.5 CLASSE 150**

Fornitura Standard

Design:

ASME/ANSI B16.5 Classe 150

Flange: 2 flange fisse

Range Misura:

DN 1/2" - DN 20"

Parti metalliche:

corpo: ASTM A 234 WPB

ASTM B16.9

flange: ASTM A 105

Cast Steel: ASTM A216

Grade WCB

Rivestimento interno:

♠ PTFE

◆ PFA

Varianti

Design:

ASME/ANSI B16.5 Classe 300

Flange: 1 fissa + 1 libera

Parti metalliche:

Acciaio Inox 304L/316L

Acc. per basse temp. P275NL

Rivestimento interno:

PTFE antistatico

PFA antistatico

Rivestimento interno: PTFE ASTM D-4894 or 4895 Parti metalliche: corpo: P245GH EN 10216-1

Curva 90° disponibile in versione Antistatica

Finitura standard: vernice zincante epossivinilica grigia

Fornibili a richiesta

Omologazioni e Certificazioni

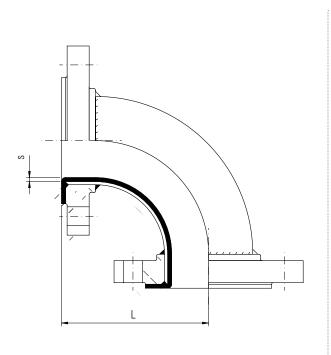
Qualità e collaudi speciali

Servizi di ingegnieria

Forniture speciali

Parti metalliche Inox 304/316L

Finitura Superfici



□ CURVA A 90° IN ACCAIO RIVESTITA INTERNAMENTE IN PTFE - PFA **DESIGN ASME B16.5 CLASSE 150**

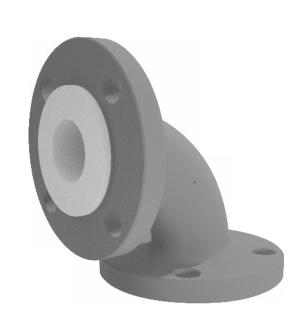


Tabella dimensionale

DN	L mm	s ± 10% mm	Peso ca. kg		
1/2"	65	3,0	1,5		
3/4"	75	3,0	2,1		
1"	89	3,0	2,7		
1 1/4"	95	3,5	4,0		
1 1/2"	102	3,5	4,6		
2"	114	4,0	6,4		
2 1/2"	127	4,5	9,0		
3"	140	5	12		
4"	165	5,5	19		
5"	190	5,5	22		
6"	203	6	36		
8"	229	6,5	57		
10"	279	7	82		
12"	305	7	98		
14"	546	7	150		
16"	610	7	139		
18"	673	7	225		
20"	736	7	167		
24"	864	7	395		

Specifiche Tecniche dei prodotti Difline			
0	Dimensioni tubi e flange secondo ASME B16.5 Classe 150		
0	Dimensioni raccordi secondo ASME B16.5 Classe 150		
0	Condizioni operative		
0	Forza Serraggio		
0	Finitura Marcatura Imballo		
	Tabella delle resistenze chimiche dei materiali*		

vista precedente

CURVA A 45° IN ACCAIO RIVESTITA INTERNAMENTE IN PTFE **DESIGN ASME B16.5 CLASSE 150**

Fornitura Standard

Design:

ASME/ANSI B16.5 Classe 150

Flange: 2 fisse

Range Misura:

DN 1/2" - DN 20"

Parti metalliche:

corpo: ASTM A 234 WPB

ASTM B16.9

flange: ASTM A 105

Cast Steel: ASTM A216

Grade WCB

Rivestimento interno:

 ► PTFE

Varianti

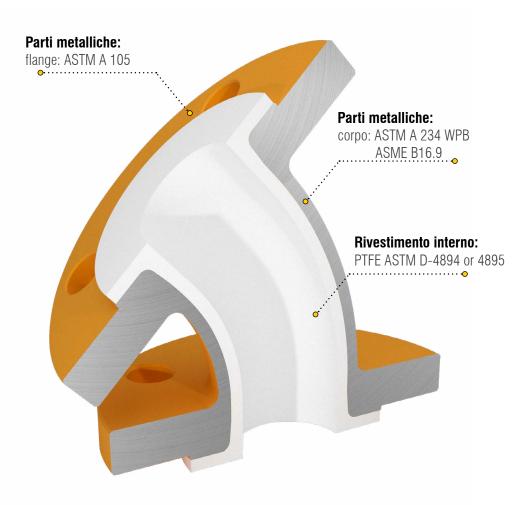
Design:

ASME/ANSI B16.5 Classe 300

Flange: 1 fissa + 1 libera

Parti metalliche:

Acciaio Inox 304L/316L


Acc. per basse temp. P275NL

Rivestimento interno:

TFE antistatico

➡ PFA antistatico

Curva 45° disponibile in versione Antistatica

Finitura standard: vernice zincante epossivinilica grigia

Fornibili a richiesta

Omologazioni e Certificazioni

Qualità e collaudi speciali

Servizi di ingegnieria

Forniture speciali

Parti metalliche Inox 304/316L

Finitura Superfici

□ CURVA A 45° IN ACCAIO RIVESTITA INTERNAMENTE IN PTFE - PFA **DESIGN ASME B16.5 CLASSE 150**

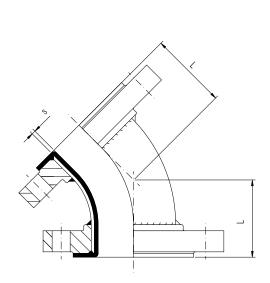


Tabella dimensionale

DN	L mm	s ± 10% mm	Peso ca. kg
1/2"	45	3	1,7
3/4"	45	3	2
1"	45	3,0	3
1 1/4"	51	3,5	4
1 1/2"	57	3,5	6
2"	64	4,0	9
2 1/2"	76	4,5	13
3"	76	5	15
4"	102	5,5	20
5"	114	5,5	26
6"	127	6	33
8"	140	6,5	54
10"	165	7	75
12"	190	7	110
14"	190	7	118
16"	203	7	145
18"	216	7,0	165
20"	241	7,0	210
24"	279	7	290

Specifi	Specifiche Tecniche dei prodotti Difline			
4.8				
0	Dimensioni tubi e flange secondo ASME B16.5 Classe 150			
0	Dimensioni raccordi secondo ASME B16.5 Classe 150			
0	Condizioni operative			
0	Forza Serraggio			
0	Finitura Marcatura Imballo			
	Tabella delle resistenze chimiche dei materiali*			

vista precedente

T UGUALI IN ACCAIO RIVESTITE INTERNAMENTE IN PTFE - PFA **DESIGN ASME B16.5 CLASSE 150**

Fornitura Standard

Design:

ASME/ANSI B16.5 Classe150

Flange: 3 flange fisse

Range Misura:

DN 1/2" - DN 20"

Parti metalliche:

corpo: ASTM A 234 WPB

ASTM B16.9

flange: ASTM A 105

Cast Steel: ASTM A216

Grade WCB

Rivestimento interno:

◆ PTFE

← PFA

Varianti

Design:

ASME/ANSI B16.5 Classe 300

Flange: 1 fissa + 2 libere

Parti metalliche:

Acciaio Inox 304L/316L

Acc. per basse temp. P275NL

Rivestimento interno:

PTFE antistatico

PFA antistatico

PTFE ASTM D-4894 or 4895 PFA ASTM D-3307 tipo II Parti metalliche: corpo: ASTM A 234 WPB **ASME B16.9** Parti metalliche: flange: ASTM A 105

Rivestimento interno:

T uguali disponibile in versione Antistatica

Finitura standard: vernice zincante epossivinilica grigia

Fornibili a richiesta

Omologazioni e Certificazioni

Qualità e collaudi speciali

Servizi di ingegnieria

Forniture speciali

Parti metalliche Inox 304/316L

Finitura Superfici

vista precedente

■ T UGUALI IN ACCIAIO RIVESTITE INTERNAMENTE IN PTFE - PFA DESIGN ASME B16.5 CLASSE 150

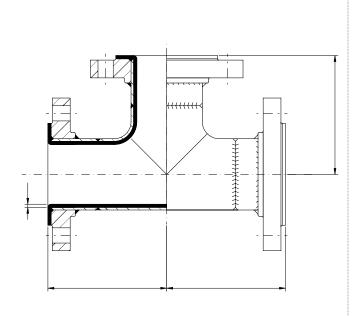


Tabella dimensionale

Tabolia dililolololalo					
DN	L mm	s ± 10% mm	Peso ca. kg		
1/2"	65	3	2,5		
3/4"	75	3	3,2		
1"	89	3,5	3,6		
1 1/4"	95	3,5	4,7		
1 1/2"	102	4,0	6,1		
2"	114	4	9,7		
2 1/2"	127	4,5	13,5		
3"	140	4,5	21		
4"	165	5	36		
5"	190	6	57		
6"	203	6,0	82		
8"	229	7	121		
10"	279	7,5	165		
12"	305	8	228		
14"	356	8	312		
16"	381	8	375		
18"	419	8	400		
20"	457	8	420		
24"	500	8	580		

Specifiche Tecniche dei prodotti Difline

Dimensioni tubi e flange secondo ASME B16.5 Classe 150

Dimensioni raccordi secondo ASME B16.5 Classe 150

Condizioni operative

Forza Serraggio

Finitura Marcatura Imballo

Tabella delle resistenze chimiche dei materiali*

DIFLINE

■ T RIDOTTE IN ACCAIO RIVESTITE INTERNAMENTE IN PTFE - PFA **DESIGN ASME B16.5 CLASSE 150**

Fornitura Standard

Design:

ASME/ANSI B16.5 Classe 150

Flange: 3 flange fisse

Range Misura:

DN 3/4" - DN 16"

Parti metalliche:

corpo: ASTM A 234 WPB

ASTM B16.9

flange: ASTM A 105

Cast Steel: ASTM A216

Grade WCB

Rivestimento interno:

♠ PTFE

◆ PFA

Varianti

Design:

ASME/ANSI B16.5 Classe 300

Flange: 1 fissa + 2 libere

Parti metalliche:

Acciaio Inox 304L/316L Acc. per basse temp. P275NL

Rivestimento interno:

TFE antistatico

PFA antistatico

T ridotta disponibile in versione Antistatica

Finitura standard: vernice zincante epossivinilica grigia

Fornibili a richiesta

Omologazioni e Certificazioni

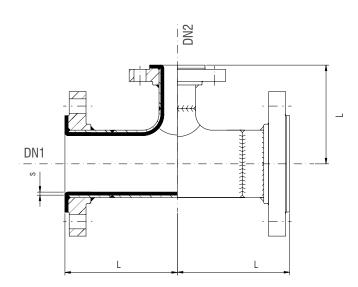
Qualità e collaudi speciali

Servizi di ingegnieria

Forniture speciali

Parti metalliche Inox 304/316L

Finitura Superfici



vista precedente

□ T RIDOTTE IN ACCAIO RIVESTITE INTERNAMENTE IN PTFE - PFA **DESIGN ASME B16.5 CLASSE 150**

Tabella dimensionale

Tabella diliterisionale				
DN1	DN2	L mm	s	Peso ca. kg
3/4"	1/2"	75	3	3,1
1"	1/2"	89	3,5	3,7
	3/4"	89		3,9
1 1/4"	3/4"	95	3,5	4,4
	1"	95		5,2
1 1/2"	1/2"	102	4,0	5,3
	3/4"	102		5,5
	1"	102		5,7
	1 1/4"	102		6,0
2"	1/2"	114	4,0	8,8
	1"	114		9,3
	1 1/4"	114		9,5
	1 1/2"	114		9,8
2 1/2"	1"	127	4,5	14,0
	1 1/4"	127		14,0
	1 1/2"	127		14,7
	2"	127		15,5
3"	1"	140	4,5	19,7
	1 1/2"	140		20,4
	2"	140		20,9
	2 1/2"	140		21,8

DN1	DN2	L mm	s	Peso ca. kg
4"	1"	165	5	31,4
	1 1/2"	165		33,3
	2"	165		34,1
	2 1/2"	165		35,0
	3"	165		36,0
5"	2 1/2"	190	6	49,0
	3"	190		52,0
	4"	190		55,0
6"	3"	203	6,0	56,2
	4"	203		77,0
	5"	203		80,0
8"	4"	229	7	83,0
	5"	229		125
	6"	229		130
10"	6"	279	7,5	156
	8"	279		161
12"	6"	305	8	165
	8"	305		218
	10"	305		222
14"	6"	356	8	205
	8"	356		294
	10"	356		300
	12"	356		308
16"	8"	381	8	292
	10"	381		356
	12"	381		362
	14"	381		370

DIFLINE

■ T RIDOTTE IN ACCIAIO RIVESTITE INTERNAMENTE IN PTFE - PFA **DESIGN ASME B16.5 CLASSE 150**

Specifiche Tecniche dei prodotti Difline

Dimensioni tubi e flange secondo ASME B16.5 Classe 150

Dimensioni raccordi secondo ASME B16.5 Classe 150

Condizioni operative

Forza Serraggio

Finitura Marcatura Imballo

Tabella delle resistenze chimiche dei materiali*

Omologazioni e Certificazioni

Qualità e collaudi speciali

Servizi di ingegnieria

Forniture speciali

Parti metalliche Inox 304/316L

Finitura Superfici

vista precedente

CROCI UGUALI IN ACCIAIO RIVESTITE INTERNAMENTE IN PTFE - PFA **DESIGN ASME B16.5 CLASSE 150**

Fornitura Standard

Design:

ASME/ANSI B16.5 Classe 150

Flange: 4 flange fisse

Range Misura:

DN 1/2" - DN 20"

Parti metalliche:

corpo: ASTM A 234 WPB

ASME B16.9

flange: ASTM A 105

Cast Steel: ASTM A216

Grade WCB

Rivestimento interno:

PFA

Design:

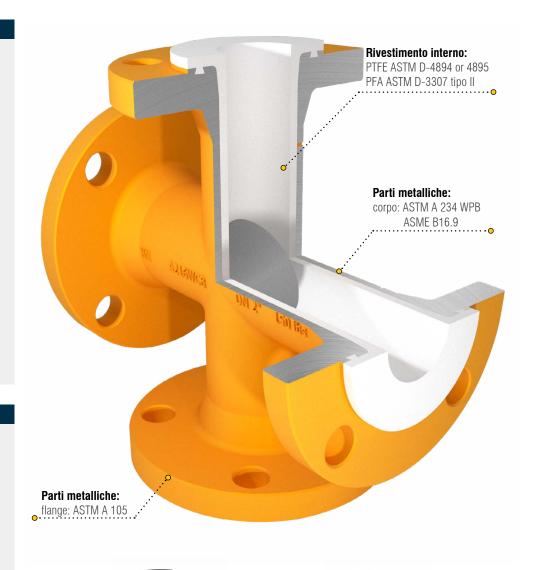
Varianti

ASME/ANSI B16.5 Classe 300

Flange: 1 fissa + 3 libere

Parti metalliche:

Acciaio Inox 304L/316L


Acc. per basse temp. P275NL

Rivestimento interno:

TFE antistatico

← PFA antistatico

T uguale disponibile in versione Antistatica

Finitura standard: vernice zincante epossivinilica grigia

Omologazioni e Certificazioni

Qualità e collaudi speciali

Servizi di ingegnieria

Forniture speciali

Parti metalliche Inox 304/316L

Finitura Superfici

□ CROCI UGUALI IN ACCAIO RIVESTITE INTERNAMENTE IN PTFE - PFA **DESIGN ASME B16.5 CLASSE 150**

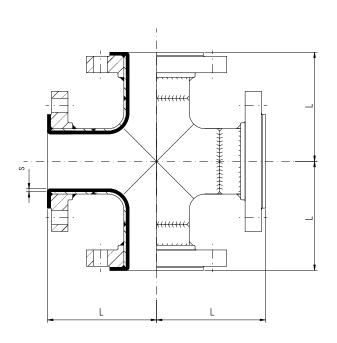


Tabella dimensionale

labella difficilisionale						
DN	L mm	s ± 10% mm	Peso ca. kg			
1/2"	65	3	3,2			
3/4"	75	3	4,0			
1"	89	3,5	5,0			
1 1/4"	95	3,5	6,5			
1 1/2"	102	4,0	8,5			
2"	114	4	13,0			
2 1/2"	127	4,5	17,5			
3"	140	4,5	28			
4"	165	5	47			
5"	190	6	73			
6"	203	6,0	96			
8"	229	7	125			
10"	279	7,5	195			
12"	305	8	280			
14"	356	8	380			
16"	381	8	480			
18"	419	8	525			
20"	457	8	550			
24"	500	8	730			

Specifi	che Tecniche dei prodotti Difline
معد	Dimensioni tuhi e flenga eccende
(3)	Dimensioni tubi e flange secondo ASME B16.5 Classe 150
0	Dimensioni raccordi secondo ASME B16.5 Classe 150
0	Condizioni operative
0	Forza Serraggio
0	Finitura Marcatura Imballo
	Tabella delle resistenze chimiche dei materiali*

PRESE STRUMENTI IN ACCIAIO RIVESTITE INTERNAMENTE IN PTFE - PFA **DESIGN ASME B16.5 CLASSE 150**

Fornitura Standard

Usati per: termometri, manometri, prese campione

Design:

ASME/ANSI B16.5 Classe 150

Range Misura:

DN 3/4" - DN 16"

Parti metalliche:

corpo: ASTM A 106 GR. B

ASME B36.10

flange: ASTM A 105

Rivestimento interno:

♠ PFA

Varianti

Design:

ASME/ANSI B16.5 Classe 300

Parti metalliche:

Acciaio Inox 304L/316L

Acc. per basse temp. P275NL

Rivestimento interno:

TFE antistatico

➡ PFA antistatico

T ridotta disponibile in versione Antistatica

Finitura standard: vernice zincante epossivinilica grigia

Omologazioni e Certificazioni

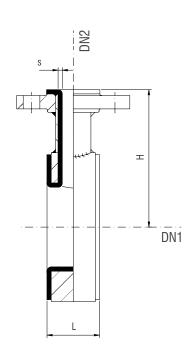
Qualità e collaudi speciali

Servizi di ingegnieria

Forniture speciali

Parti metalliche Inox 304/316L

Finitura Superfici



DIFLINE

□ PRESE STRUMENTI IN ACCIAIO RIVESTITE INTERNAMENTE IN PTFE - PFA **DESIGN ASME B16.5 CLASSE 150**

Tabella dimensionale

iabona ai	monordian				
DN1	DN2	L mm	H mm	s	Peso ca. kg
1"	1/2"	50	89	4	1,9
	3/4"				2,0
	1"				2,2
1 1/4"	1/2"	50	95	4	2,1
	3/4"				2,3
	1"				2,5
1 1/2"	1/2"	50	102	4	2,4
	3/4"	50			2,6
	1"	50			2,8
	1 1/2"	75			4,4
2"	1/2"	50	114	4	3,2
	3/4"	50			3,4
	1"	50			3,6
	1 1/2"	75			6,2
	2"	90			8,1
2 1/2"	1/2"	50	127	4	3,7
	3/4"	50			3,8
	1"	50			3,9
	1 1/2"	75			7,2
	2"	90	127	4	9,8
3"	1/2"	50	140	4	4,3
	3/4"	50			4,5

DN1	DN2	L mm	H mm	s	Peso ca. kg
	1"	50			4,7
	1 1/2"	75			8,3
	2"	90			12,6
4"	1/2"	50	165	4,5	5,5
	3/4"	50			5,7
	1"	50			5,9
	1 1/2"	75			8,9
	2"	90			16,0
5"	1/2"	50	190	5	6,6
	3/4"	50			6,8
	1"	50			7,0
	1 1/2"	75			12,4
	2"	90			20,5
6"	1/2"	50	203	5	7,7
	3/4"	50			7,9
	1"	50			8,2
	1 1/2"	75			14,7
	2"	90			21,8
8"	1/2"	50	229	5	9,9
	3/4"	50			10,3
	1"	50			10,5
	1 1/2"	75			17,8
	2"	90			23,4
10"	1/2"	50	279	5	13,3
	3/4"	50			13,5
	1"	50			13,7
	1 1/2"	75			23,2
	2"	90			25,9
12"	1/2"	90	305	6,5	41,4
	3/4"	90			41,6
	1"	90			43,0
	1 1/2"	110			55,5
	2"	120			62,1
14"	1/2"	90	356	6,5	51,5
	3/4"	90			52,6
	1"	90			53,1
	1 1/2"	110			66,5
	2"	120			73,7
16"	1/2"	90	381	6,5	58,2
	3/4"	90			58,6

vista precedente

□ PRESE STRUMENTI IN ACCIAIO RIVESTITE INTERNAMENTE IN PTFE - PFA **DESIGN ASME B16.5 CLASSE 150**

Specifiche Tecniche dei prodotti Difline

Dimensioni tubi e flange secondo ASME B16.5 Classe 150

Dimensioni raccordi secondo ASME B16.5 Classe 150

Condizioni operative

Forza Serraggio

Finitura Marcatura Imballo

Tabella delle resistenze chimiche dei materiali*

Omologazioni e Certificazioni

Qualità e collaudi speciali

Servizi di ingegnieria

Forniture speciali

Parti metalliche Inox 304/316L

Finitura Superfici

DIFLINE

☐ FLANGE RIDOTTE IN ACCAIO RIVESTITE INTERNAMENTE IN PTFE - PFA **DESIGN ASME B16.5 CLASSE 150**

Fornitura Standard

Design:

ASME/ANSI B16.5 Classe 150

Range Misura:

DN 1/2" - DN 20"

Parti metalliche:

corpo: ASTM A 105

Rivestimento interno:

◆ PTFF

← PFA

Varianti

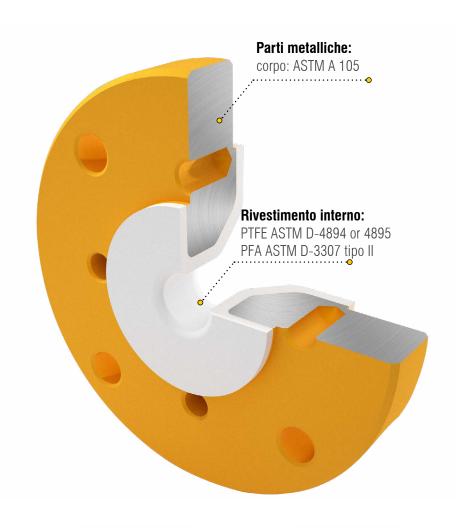
Design:

ASME/ANSI B16.5 Classe 300

Parti metalliche:

Acciaio Inox 304L/316L

Acc. per basse temp. P275NL


Rivestimento interno:

TFE antistatico

PFA antistatico

Flangia ridotta in versione Antistatica

Finitura standard: vernice zincante epossivinilica grigia

Omologazioni e Certificazioni

Qualità e collaudi speciali

Servizi di ingegnieria

Forniture speciali

Parti metalliche Inox 304/316L

Finitura Superfici

vista precedente

■ FLANGE RIDOTTE IN ACCAIO RIVESTITE INTERNAMENTE IN PTFE - PFA DESIGN ASME B16.5 CLASSE 150

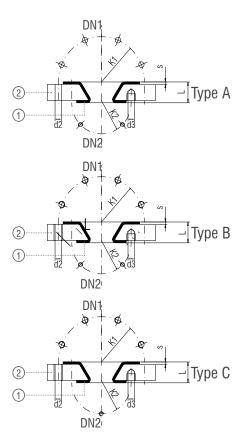


Tabella dimensionale

DN1	DN2	L mm	s ± 10% mm	Туре	Peso ca. kg
1"	1/2"	35	3,5	С	2,1
	3/4"				2,4
1 1/4"	3/4"	35	3,5	С	3,9
	1"				3,5
1 1/2"	3/4"	35	4,0	С	40
	1"				4,1
	1 1/4"				3,9
2"	3/4"	35	4,0	В	5,0
	1"			В	4,9
	1 1/2"			С	5,1

Specifiche Tecniche dei prodotti Difline

Dimensioni tubi e flange secondo ASME B16.5 Classe 150

Dimensioni raccordi secondo ASME B16.5 Classe 150

Condizioni operative

Forza Serraggio

Finitura Marcatura Imballo

Tabella delle resistenze chimiche dei materiali*

ANSI

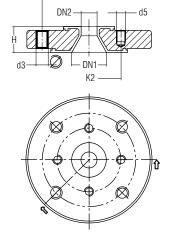
indice

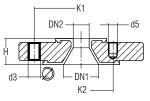
vista precedente

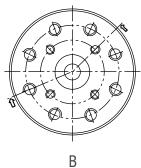
□ FLANGE RIDOTTE IN ACCIAIO RIVESTITE INTERNAMENTE IN PTFE - PFA **DESIGN ASME B16.5 CLASSE 150**

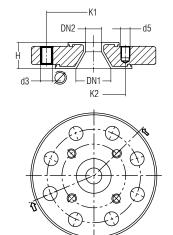
	·				
DN1	DN2	L mm	s ± 10% mm	Туре	Peso ca. kg
2 1/2"	1"	35	4,0	Α	5,9
	1 1/2"			В	5,6
	2"			С	5,6
3"	1"	35	4/3,5	Α	6,8
	1 1/2"		4	В	6,6
	2"		4	С	6,4
	2 1/2"		4	С	6,2
4"	1"	45	4,5/3,5	А	12
	1 1/2"		4,5/4		12
4"	2"	45	4,5/4	Α	12
	3"			В	10
5"	1"	45	4,5/3,5	А	16
	1 1/2"		4,5/4	А	15
	2"		4,5/4	Α	14
	3"		4,5/4	В	13
	4"		4,5/4	С	13
6"	1"	45	5/3,5	Α	22
	1 1/2"		5/4	Α	20
	2"		5/4	Α	19
	3"		5/4	Α	18
	4"		5/4,5	В	17
	5"		5/4,5	С	16
8"	1"	45	5/3,5	Α	29
	2"		5/3,5		28
	3"		5/4		27
	4"		5/4,5		25
	6"		5		23
10"	2"	45	6/4	Α	28
	3"		6/4	Α	24
	4"		6/4	Α	22
	6"		5	Α	19
	8"		5	В	16
12"	2"	50	6/4	Α	44
	3"		6/4	Α	38
	4"		6/4	Α	36
	6"		6/4	Α	31
	8"		6/4	Α	28
	10"		5,5	В	24

DN1	DN2	L mm	s ± 10% mm	Туре	Peso ca. kg
14"	2"	50	6/4	А	56
	3"		6/4	Α	50
	4"		6/4	А	47
	6"		6/4	Α	42
	8"		6/4	Α	38
	10"		6	Α	35
	12"		6	С	33
16"	3"	50	6/4	А	71
	4"		6/4	А	68
	6"		6/4	А	62
	8"		6/4	А	60
	10"		6/4	А	55
	12"		6	А	49
	14"		6	В	40
18"	4"	50	6/4	А	77
	6"				72
	8"				70
18"	10"	50	6/4	А	66
	12"		6/4	А	58
	14"		6/4	В	49
	16"		6	С	44
20"	4"	50	6/4	А	93
	6"			Α	87
	8"			Α	86
	10"			А	85
	12"			Α	77
	14"			Α	70
	16"			В	62
24"	6"	50	6/4	Α	139
	8"			Α	131
	10"			А	128
	12"			А	121
	14"			А	105
	16"			А	93
	18"			А	84
	20"			В	78






A2-45 data sheet


☐ FLANGE RIDOTTE IN ACCAIO RIVESTITE INTERNAMENTE IN PTFE - PFA **DESIGN ASME B16.5 CLASSE 150**

Α

C

DN1		DN	2
ndx3	ndx4	k2	ndx5
-		60,3	
-		79,4	
-		88,9	
-		98,4	
8 x 5/8"	-	120,6	
8 x 5/8"	-	139,7	
8 x 5/8"	-	152,4	
-		79,4	
-			
-			
-			
-	-		
8 x 3/4"	-		
8 x 3/4"	-		
-			
-			
-			
-			
-			
-			
8 x 3/4"	-		
8 x 3/4"	-		

vista precedente

☐ FLANGE CIECHE IN ACCIAIO RIVESTITE IN PTFE **DESIGN ASME B16.5 CLASSE 150**

Fornitura Standard

Design:

ASME/ANSI B16.5 Classe 150

Range Misura:

DN 1/2" - DN 20"

Parti metalliche:

corpo: ASTM A 105

Rivestimento interno:

♠ PTFE

Varianti

Design:

ASME/ANSI B16.5 Classe 300

Parti metalliche:

Acciaio Inox 304/316L

Acc. per basse temp. P275NL

Rivestimento interno:

PFA antistatico

Parti metalliche: corpo: ASTM A 105 Rivestimento interno: PTFE ASTM D-4894

Flangie cieche in versione Antistatica

Finitura standard: vernice zincante

epossivinilica grigia

Omologazioni e Certificazioni

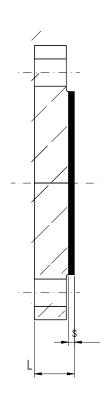
Qualità e collaudi speciali

Servizi di ingegnieria

Forniture speciali

Parti metalliche Inox 304/316L

Finitura Superfici



☐ FLANGE CIECHE IN ACCIAIO RIVESTITE IN PTFE **DESIGN ASME B16.5 CLASSE 150**

Tabella dimensionale

DN	L mm	s ± 10% mm	Peso ca. kg
1/2"	15	2,5	0,8
3/4"	16	3,0	0,9
1"	17	3,0	1,2
1 1/4"	19	3,0	1,8
1 1/2"	20	3,0	2,1
2"	22	3,0	3,0
2 1/2"	25	3,0	4,0
3"	27	3,5	5,0
4"	27	4,5	6,0
5"	27	4,5	9,1
6"	28	5,0	11,8
8"	31	5,0	18
10"	33	5,0	26
12"	35	5,0	35
14"	38	5,0	45
16"	40	6,0	60
18"	43	6,0	70
20"	46	6,0	85
24"	51	6,0	150

Specifi	che Tecniche dei prodotti Difline
(3)	Dimensioni tubi e flange secondo ASME B16.5 Classe 150
0	Dimensioni raccordi secondo ASME B16.5 Classe 150
0	Condizioni operative
0	Forza Serraggio
0	Finitura Marcatura Imballo
	Tabella delle resistenze chimiche dei materiali*

vista precedente

RIDUZIONI CONCENTRICHE IN ACCIAIO RIVESTITE IN PTFE - PFA **DESIGN ASME B16.5 CLASSE 150**

Fornitura Standard

Design:

ASME/ANSI B16.5 Classe 150

Flange: 2 flange fisse

Range Misura:

DN 3/4" - DN 20"

Parti metalliche:

corpo: ASTM A 234 WPB

ASME B16.9

flange: ASTM A 105

Cast Steel: ASTM A216

Grade WCB

Rivestimento interno:

♠ PTFE

◆ PFA

Varianti

Design:

ASME/ANSI B16.5 Classe 300

Flange: 1 fissa + 1 libera (DN1)

Parti metalliche:

Acciaio Inox 304L/316L

Acc. per basse temp. P275NL

Rivestimento interno:

TFE antistatico

→ PFA antistatico

Rivestimento interno: PTFE ASTM D-4894 or 4895 PFA ASTM D-3307 tipo II Parti metalliche: corpo: ASTM A 234 WPB Parti metalliche: **ASME B16.9** flange: ASTM A 105 Parti metalliche: flange: ASTM A 105

Riduzione concentrica in versione Antistatica

Finitura standard: vernice zincante

epossivinilica grigia

Omologazioni e Certificazioni

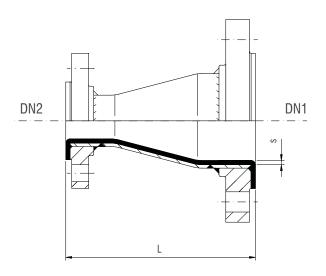
Qualità e collaudi speciali

Servizi di ingegnieria

Forniture speciali

Parti metalliche Inox 304/316L

Finitura Superfici



A2-51 data sheet

vista precedente

RIDUZIONI CONCENTRICHE IN ACCIAIO RIVESTITE IN PTFE - PFA **DESIGN ASME B16.5 CLASSE 150**

Tabella dimensionale

DN1	DN2	L mm	s ± 10% mm	Peso ca. kg
3/4"	1/2"	114	2	2,1
1"	1/2"	114	3	2,4
	3/4"			2,3
1 1/4"	3/4"	114	3	2,8
	1"			3,0
1 1/2"	3/4"	114	3	3,1
	1"			3,3
	1 1/4"			3,8
2"	3/4"	127	4/3	4,0
	1"			4,1
	1 1/4"			4,3
	1 1/2"			4,8
2 1/2"	1"	140	4/3	5,8
	1 1/4"		4/3	6,1
	1 1/2"		4	6,4
	2"		4	7,0
3"	1"	152	4/3	6,7
	1 1/4"		4/3	6,5
	1 1/2"		4/3	6,3
	2"		4	6,9
3"	2 1/2"	152	4	7,5
4"	1"	178	4,5/3	10,2
	1 1/4"		4,5/3	9,6

DN4	DNO		s ± 10%	Dana er l
DN1	DN2	L mm	mm	Peso ca. kg
	2"		4,5/4	9,9
	2 1/2"		4,5	10,6
	3"		4,5	12,3
5"	2"	203	4,5/4	10,6
	2 1/2"		4,5/4	11,0
	3"		4,5/4	12,8
	4"		4,5	15,0
6"	1"	229	5/3	19,0
	2"		5/3	20,0
	2 1/2"		5/4	18,0
	3"		5/4	17,4
	4"		5/4,5	18,3
	5"		5	20,1
8"	4"	279	6/4,5	22,1
	5"		6/4,5	23,8
	6"		6/5	25,2
10"	4"	305	6,5/4,5	33,1
	6"		6,5/5	37,8
	8"		6,5	44,8
12"	6"	356	6,5	46,0
	8"			48,0
	10"			52,6
14"	8"	406	6,5	69,0
	10"			73,6
	12"			80,0
16"	10"	457	6,5	98,0
	12"			105
	14"			115
18"	12"	483	6,5	135
	14"			148
	16"			157
20"	12"	508	6,5	185
	14"			198
	16"			210
	18"			218
24"	16"	610	4,5	272
	18"			282
	20"			291

DIFLINE

RIDUZIONI CONCENTRICHE IN ACCIAIO RIVESTITE IN PTFE - PFA **DESIGN ASME B16.5 CLASSE 150**

Specifiche Tecniche dei prodotti Difline

Dimensioni tubi e flange secondo ASME B16.5 Classe 150

Dimensioni raccordi secondo ASME B16.5 Classe 150

Condizioni operative

Forza Serraggio

Finitura Marcatura Imballo

Tabella delle resistenze chimiche dei materiali*

Fornibili a richiesta

Omologazioni e Certificazioni

Qualità e collaudi speciali

Servizi di ingegnieria

Forniture speciali

Parti metalliche Inox 304/316L

Finitura Superfici

vista precedente

RIDUZIONI ECCENTRICHE IN ACCIAIO RIVESTITE INTERNAMENTE IN PTFE - PFA **DESIGN ASME B16.5 CLASSE 150**

Fornitura Standard

Design:

ASME/ANSI B16.5 Classe 150

Flange: 2 flange fisse

Range Misura:

DN 3/4" - DN 20"

Parti metalliche:

corpo: ASTM A 234 WPB

ASME B16.9

flange: ASTM A 105

Cast Steel: ASTM A216

Grade WCB

Rivestimento interno:

Varianti

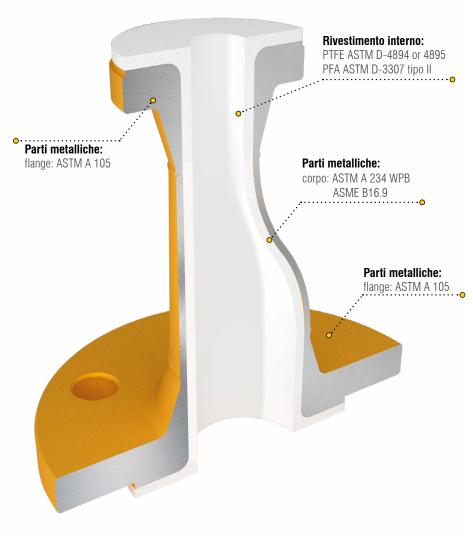
Design:

ASME/ANSI B16.5 Classe 300

Flange: 1 fissa + 1 libera (DN1)

Parti metalliche:

Acciaio Inox 304L/316L


Acc. per basse temp. P275NL

Rivestimento interno:

TFE antistatico

◆ PFA

➡ PFA antistatico

Riduzione eccentrica in versione Antistatica

Finitura standard: vernice zincante epossivinilica grigia

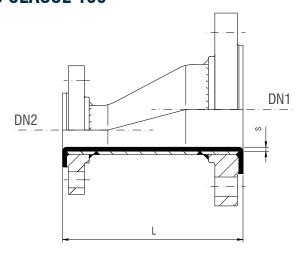
Omologazioni e Certificazioni

Qualità e collaudi speciali

Servizi di ingegnieria

Forniture speciali

Parti metalliche Inox 304/316L


Finitura Superfici

RIDUZIONI ECCENTRICHE IN ACCIAIO RIVESTITE INTERNAMENTE IN PTFE - PFA **DESIGN ASME B16.5 CLASSE 150**

Tabella dimensionale

ANSI

iabona ani	ionoronaro			
DN1	DN2	L mm	s ± 10% mm	Peso ca. kg
3/4"	1/2"	114	2	2,1
1"	1/2"	114	3	2,4
	3/4"			2,3
1 1/4"	3/4"	114	3	2,8
	1"			3,0
1 1/2"	3/4"	114	3	3,1
	1"			3,3
	1 1/4"			3,8
2"	1 1/4"	127	4/3	4,3
	1 1/2"			4,8
	2"			4,8
2 1/2	1 1/2"	140	4	6,4
	2"			7,0
3"	1 1/2"	152	4	6,3
	2"			6,9
	2 1/2"			7,5
4"	1 1/2"	178	4,5	9,7
	2"			9,9
	3"			12,3

DN1	DN2	L mm	s ± 10% mm	Peso ca. kg
5"	3"	203	4,5	12,8
	4"			15,0
5"	3"	203	4,5	12,8
	4"			15,0
6"	4"	229	5/4,5	18,3
10"	6"	305	6,5	37,8
	8"			44,8
12"	8"	356	6,5	48,0
	10"			52,6
14"	10"	406	6,5	73,6
	12"			80,0
16"	12"	457	6,5	105
	14"			115
18"	14"	483	6,5	148
	16"			157
20"	16"	508	6,5	210
	18"			218

vista precedente

■ RIDUZIONI ECCENTRICHE IN ACCIAIO RIVESTITE INTERNAMENTE IN PTFE - PFA **DESIGN ASME B16.5 CLASSE 150**

Specifiche Tecniche dei prodotti Difline

Dimensioni tubi e flange secondo ASME B16.5 Classe 150

Dimensioni raccordi secondo ASME B16.5 Classe 150

Condizioni operative

Forza Serraggio

Finitura Marcatura Imballo

Tabella delle resistenze chimiche dei materiali*

Omologazioni e Certificazioni

Qualità e collaudi speciali

Servizi di ingegnieria

Forniture speciali

Parti metalliche Inox 304/316L

Finitura Superfici

vista precedente

DISTANZIALI IN ACCIAIO TIPO F RIVESTITI IN PTFE **DESIGN ASME B16.5 CLASSE 150**

Fornitura Standard

Design:

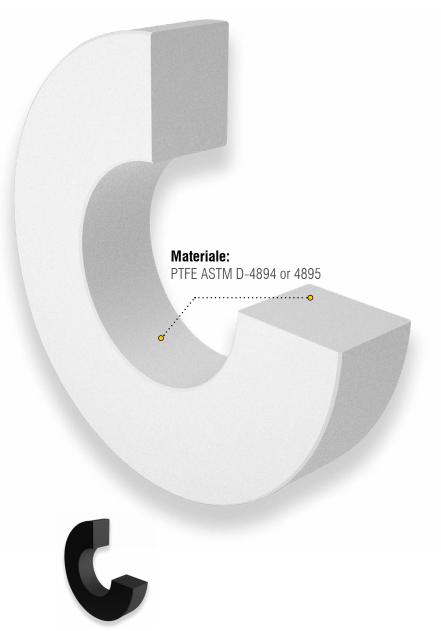
ASME/ANSI B16.5 Classe 150

Range Misura:

DN 1/2" - DN 20"

Materiale:

♠ PTFE


Varianti

Design:

ASME/ANSI B16.5 Classe 300

Materiale:

TFE antistatico

Distanziale Tipo F in versione Antistatica

Omologazioni e Certificazioni

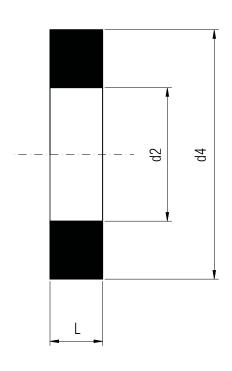
Qualità e collaudi speciali

Servizi di ingegnieria

Forniture speciali

Parti metalliche Inox 304/316L

Finitura Superfici



A2-57 data sheet

vista precedente

□ DISTANZIALI IN ACCIAIO TIPO F RIVESTITI IN PTFE **DESIGN ASME B16.5 CLASSE 150**

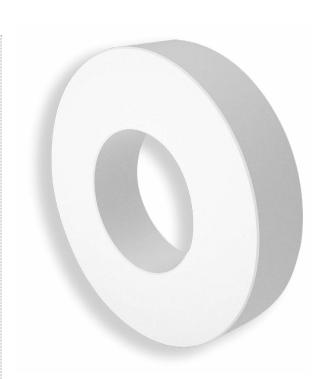


Tabella dimensionale

				,		
DN	L max. mm	d2 mm	d4 mm	Peso ca. kg		
1/2"	300	14	35	0,1		
3/4"	300	16	43	0,1		
1"	300	22	51	0,2		
1 1/4"	300	31	64	0,25		
1 1/2"	300	37	73	0,3		
2"	300	48	92	0,4		
2 1/2"	300	64	105	0,5		
3"	300	76	127	0,6		
4"	300	101	158	0,75		
5"	300	125	186	1,1		
6"	300	153	216	1,4		
8"	300	201	270	2,0		
10"	300	254	324	3,2		
12"	300	303	381	4,0		
14"	300	333	412	4,5		
16"	300	382	470	5,2		
18"	300	430	534	6,1		
20"	300	480	585	7,2		
24"	300	590	692	8.5		

Specifi	Specifiche Tecniche dei prodotti Difline				
0	Dimensioni tubi e flange secondo ASME B16.5 Classe 150				
0	Dimensioni raccordi secondo ASME B16.5 Classe 150				
0	Condizioni operative				
0	Forza Serraggio				
0	Finitura Marcatura Imballo				
	Tabella delle resistenze chimiche dei materiali*				

DIFLINE

DISTANZIALI IN ACCIAIO TIPO G RIVESTITI IN PTFE **DESIGN ASME B16.5 CLASSE 150**

Fornitura Standard

Design:

ASME/ANSI B16.5 Classe 150

Range Misura:

DN 1/2" - DN 20"

Parti metalliche:

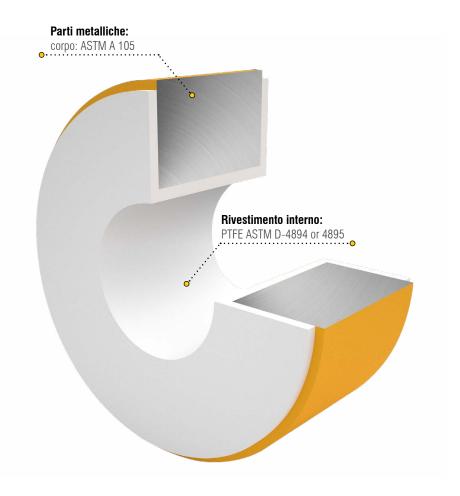
corpo: ASTM A 105

Rivestimento interno:

Varianti

Design:

ASME/ANSI B16.5 Classe 300


Parti metalliche:

Acciaio Inox 304L/316L

Acc. per basse temp. P275NL

Rivestimento interno:

TFE antistatico

Distanziale Tipo G in versione Antistatica

Finitura standard: vernice zincante epossivinilica grigia

Omologazioni e Certificazioni

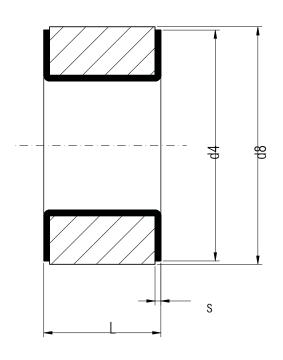
Qualità e collaudi speciali

Servizi di ingegnieria

Forniture speciali

Parti metalliche Inox 304/316L

Finitura Superfici



■ DISTANZIALI IN ACCIAIO TIPO G RIVESTITI IN PTFE DESIGN ASME B16.5 CLASSE 150

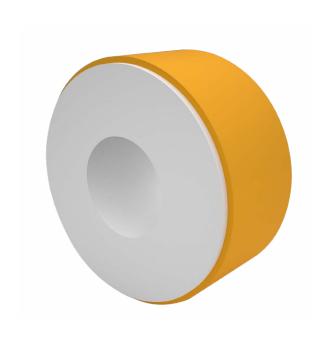


Tabella dimensionale

Tabella dillicitottate								
DN	L min. mm	L max. mm	s ± 10% mm	d4 mm	d8 mm	Peso ca. kg		
1/2"	30	60	3	35	44	0,9		
3/4"	30	60	3	43	53	1,2		
1"	30	60	3	51	63	1,8		
1 1/4"	30	60	3,5	64	72	2,1		
1 1/2"	30	60	3,5	73	82	2,6		
2"	30	60	4	92	100	3,7		
2 1/2"	30	70	4,5	105	120	4,7		
3"	30	70	5	127	133	5,3		
4"	30	80	5,5	158	170	9,5		
5"	30	80	5,5	186	193	11		
6"	30	80	6	216	218	14		
8"	30	80	6,5	270	276	18		
10"	30	80	7	324	336	29		
12"	30	90	7	381	406	30		
14"	30	90	7	412	447	50		
16"	30	90	7	470	510	60		
18"	30	100	7	534	545	71		
20"	30	100	-	585	602	75		
24"	30	120		692	714	113		

Specifiche Tecniche dei prodotti Difline

Dimensioni tubi e flange secondo ASME B16.5 Classe 150

Dimensioni raccordi secondo ASME B16.5 Classe 150

Condizioni operative

Forza Serraggio

Finitura Marcatura Imballo

Tabella delle resistenze chimiche dei materiali*

vista precedente

DISTANZIALI IN ACCIAIO TIPO H RIVESTITI IN PTFE **DESIGN ASME B16.5 CLASSE 150**

Fornitura Standard

Design:

ASME/ANSI B16.5 Classe 150

Range Misura:

DN 1/2" - DN 20"

Parti metalliche:

corpo: ASTM A 106 GR. B flange: ASTM A 105

Rivestimento interno:

◆ PTFE

Varianti

Design:

ASME/ANSI B16.5 Classe 300

Parti metalliche:

Acciaio Inox 304L/316L Acc. per basse temp. P275NL

Rivestimento interno:

► PTFE antistatico

Distanziale Tipo H in versione Antistatica

vernice zincante epossivinilica grigia

Omologazioni e Certificazioni

Qualità e collaudi speciali

Servizi di ingegnieria

Forniture speciali

Parti metalliche Inox 304/316L

Finitura Superfici

vista precedente

■ DISTANZIALI IN ACCIAIO TIPO H RIVESTITI IN PTFE DESIGN ASME B16.5 CLASSE 150

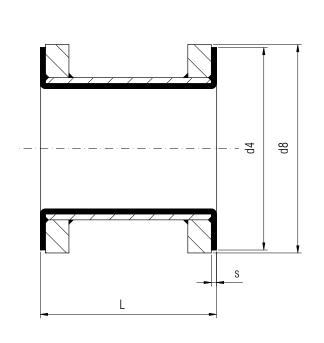


Tabella dimensionale

L min. max.	L max. mm	s	d4 mm	d8 mm	Peso tubo ca. kg/m	Peso 2 collari ca. kg
60	100	3	35	44	1,2	0,3
60	100	3	43	53	1,6	0,4
60	100	3	51	63	2,5	0,5
60	100	3,5	64	72	3,4	0,7
60	100	3,5	73	82	4,5	0,9
60	100	4	92	100	5,8	1,3
70	120	4,5	105	120	7,1	1,6
70	120	5	127	133	10	2,3
80	120	5,5	158	170	14	2,7
80	120	5,5	186	193	17,5	4
80	150	6	216	218	23,5	4,5
80	150	6,5	270	276	39	6
80	150	7	324	336	55,5	8,5
90	200	7	381	406	74	10
90	200	7	412	447	85	13
90	200	7	470	510	102	16,5
100	200	7	534	545	130	20
100	250	-	585	602	155	23
120	250	-	692	714	204	31
	min. max. 60 60 60 60 60 70 70 80 80 80 80 90 90 100 100	min. max. mm 60 100 60 100 60 100 60 100 60 100 60 100 60 100 70 120 80 120 80 150 80 150 80 150 90 200 90 200 90 200 100 200 100 250	min. max. max. max. mm s 60 100 3 60 100 3 60 100 3,5 60 100 3,5 60 100 4 70 120 4,5 70 120 5 80 120 5,5 80 120 5,5 80 150 6 80 150 6,5 80 150 7 90 200 7 90 200 7 100 200 7 100 250 -	min. max. mm max. mm s mm d4 mm 60 100 3 35 60 100 3 43 60 100 3,5 64 60 100 3,5 73 60 100 4 92 70 120 4,5 105 70 120 5,5 158 80 120 5,5 186 80 150 6 216 80 150 6,5 270 80 150 7 324 90 200 7 381 90 200 7 470 100 200 7 534 100 250 - 585	min. max. mm s mm d4 mm mm d8 mm 60 100 3 35 44 60 100 3 43 53 60 100 3,5 64 72 60 100 3,5 73 82 60 100 4 92 100 70 120 4,5 105 120 70 120 5 127 133 80 120 5,5 158 170 80 120 5,5 186 193 80 150 6 216 218 80 150 6,5 270 276 80 150 7 324 336 90 200 7 381 406 90 200 7 470 510 100 200 7 534 545 100 250 - 585 60	L min. max. max. s mm d4 mm d8 mm tubo ca. kg/m 60 100 3 35 44 1,2 60 100 3 43 53 1,6 60 100 3,5 64 72 3,4 60 100 3,5 64 72 3,4 60 100 4 92 100 5,8 70 120 4,5 105 120 7,1 70 120 5 127 133 10 80 120 5,5 158 170 14 80 120 5,5 186 193 17,5 80 150 6 216 218 23,5 80 150 6,5 270 276 39 80 150 7 324 336 55,5 90 200 7 412 447 85 90 200

Specifiche Tecniche dei prodotti Difline

Dimensioni tubi e flange secondo ASME B16.5 Classe 150

Dimensioni raccordi secondo ASME B16.5 Classe 150

Condizioni operative

Forza Serraggio

Finitura Marcatura Imballo

Tabella delle resistenze chimiche dei materiali*

DIFLINE

DISCHI IN ACCIAIO A OTTO RIVESTITI IN PTFE **DESIGN ASME B16.5 CLASSE 150**

Fornitura Standard

Design:

ASME/ANSI B16.5 Classe 150

Range Misura:

DN 1/2" - DN 18"

Parti metalliche:

corpo: ASTM A105

Rivestimento interno:

 ♠
 PTFE

Varianti

Design:

ASME/ANSI B16.5 Classe 300

Parti metalliche:

Acciaio Inox 304L/316L

Rivestimento interno:

TFE antistatico

Disco a otto in versione Antistatica

Finitura standard: vernice zincante epossivinilica grigia

Omologazioni e Certificazioni

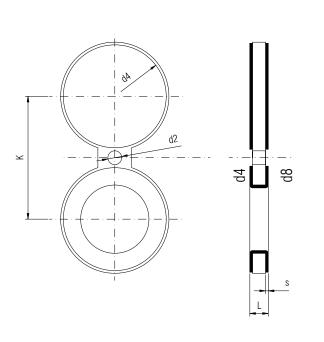
Qualità e collaudi speciali

Servizi di ingegnieria

Forniture speciali

Parti metalliche Inox 304/316L

Finitura Superfici



■ DISCHI IN ACCIAIO A OTTO RIVESTITI IN PTFE DESIGN ASME B16.5 CLASSE 150

DN	L mm	s ± 10% mm	K mm	d2 mm	d4 mm		
1"	16	3	79,4	15,9	51		
1 1/4"	16	3	88,9	15,9	64		
1 1/2"	18	3	98,4	15,9	73		
2"	20	3	120,6	19	92		
3"	24	3,5	152,4	19	127		
4"	24	4	190,5	19	158		
5"	25	4,5	215,9	22,2	186		
6"	26	5	241,3	22,2	216		
8"	28	6	298,4	22,2	270		
10"	30	6,5	361,9	25,4	324		
12"	32	6,5	431,8	25,4	381		
14"	35	6,5	476,2	28,6	412		
16"	36	6,5	539,7	28,6	470		
18"	40	6,5	577,8	31,7	534		

Specifiche Tecniche dei prodotti Difline

Dimensioni tubi e flange secondo ASME B16.5 Classe 150

Dimensioni raccordi secondo ASME B16.5 Classe 150

Condizioni operative

Forza Serraggio

Finitura Marcatura Imballo

Tabella delle resistenze chimiche dei materiali*

vista precedente

CONVOGLIATORI IN ACCIAIO RIVESTITI IN PTFE **DESIGN ASME B16.5 CLASSE 150**

Fornitura Standard

Design:

ASME/ANSI B16.5 Classe 150

Range Misura:

DN 1/2" - DN 16"

Materiale:

♠ PTFE

Varianti

Design:

ASME/ANSI B16.5 Classe 300

Materiale:

TFE antistatico

Omologazioni e Certificazioni

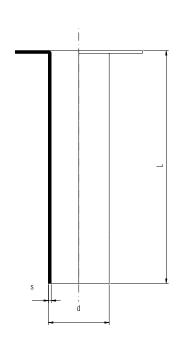
Qualità e collaudi speciali

Servizi di ingegnieria

Forniture speciali

Parti metalliche Inox 304/316L

Finitura Superfici


data sheet

DIFLINE

■ CONVOGLIATORI IN ACCIAIO RIVESTITI IN PTFE DESIGN ASME B16.5 CLASSE 150

Tabella dimensionale

DN	L max. mm	d mm	s ± 10% mm
1"	3000	24,5	3,0
1 1/4"	3000	26,0	2,75
1 1/2"	3000	35,0	3,25
2"	3000	40,0	3,0
2 1/2"	3000	51,0	3,75
3"	3000	70,0	3,0
4"	3000	82,0	3,5
5"	3000	104,0	4,75
6"	3000	133,0	4,5
8"	3000	180,0	5,75
10"	3000	230,0	5,75
12"	3000	280,0	7,0
14"	3000	330,0	6,5

Dimensioni tubi e flange secondo ASME B16.5 Classe 150 Dimensioni raccordi secondo ASME B16.5 Classe 150 **Condizioni operative** Forza Serraggio Finitura Marcatura Imballo Tabella delle resistenze chimiche dei materiali*

Specifiche Tecniche dei prodotti Difline

DIFLINE

PESCANTI IN ACCIAIO RIVESTITI INTERNAMENTE ED ESTERNAMENTE IN PTFE **DESIGN ASME B16.5 CLASSE 150**

Fornitura Standard

Design:

ASME/ANSI B16.5 Classe 150

Flange: flange fisse

Range Misura:

DN 1/2" - DN 16"

Parti metalliche:

corpo: ASTM A 106 GR flange: ASTM A 105

collare: ASTM A 105

Rivestimento:

◆ PTFE

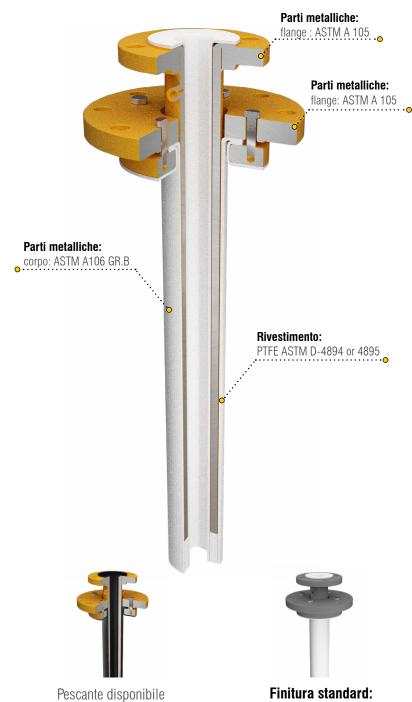
Varianti

Design:

ASME/ANSI B16.5 Classe 300

Flange: 1 Fissa + 1 Libera (DN1)

Lunghezza: fino a 5 m fino al DN


Parti metalliche:

Acciaio Inox 304L/316L

Acc. per basse temp. P275NL

Rivestimento interno:

TFE antistatico

in versione Antistatica

vernice zincante epossivinilica grigia

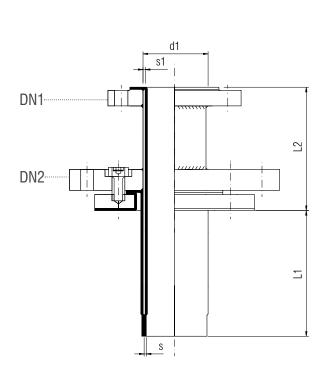
Omologazioni e Certificazioni

Qualità e collaudi speciali

Servizi di ingegnieria

Forniture speciali

Parti metalliche Inox 304/316L


Finitura Superfici

■ PESCANTI IN ACCIAIO RIVESTITI INTERNAMENTE ED ESTERNAMENTE IN PTFE DESIGN ASME B16.5 CLASSE 150

Specifiche Tecniche dei prodotti Difline

Dimension Table

DN1	DN2	L1 max. ± 25 mm	L2 max. ± 5 mm	S	Peso ca. kg/m
1/2"		2500	150	3	1,3
3/4"		2500	150	3,0	1,5
1"		2500	150	3,0	2,0
1 1/4"		2500	150	3,5	2,8
1 1/2"		2500	150	3,5	3,4
2"	lnesi	2500	150	4	4,8
2 1/2"	n reç	2500	150	4,5	6,4
3"	a / 0	2500	150	5	8,2
4"	ijesta	2500	150	5,5	11,5
5"	a richiesta / <i>on request</i>	2500	150	5,5	18,0
6"	(0	2500	150	6	28,7
8"		2500	150	6,5	40,0
10"		2500	150	7	57,0
12"		2500	200	7	76,0
16"		2500	200	7	120

0	Dimensioni tubi e flange secondo ASME B16.5 Classe 150
0	Dimensioni raccordi secondo ASME B16.5 Classe 150
0	Condizioni operative
0	Forza Serraggio
0	Finitura Marcatura Imballo
(1)	Tabella delle resistenze chimiche dei materiali*

vista precedente

■ PESCANTI IN ACCIAIO RIVESTITI INTERNAMENTE ED ESTERNAMENTE IN PTFE DESIGN ASME B16.5 CLASSE 150

Esempi di realizzazioni con terminali

A2-67 data sheet

■ PESCANTI IN ACCIAIO RIVESTITI INTERNAMENTE ED ESTERNAMENTE IN PTFE DESIGN ASME B16.5 CLASSE 150

Esempi di realizzazioni con terminali

DIFLINE

FILTRO AD Y E SPIA VISIVA

Filtri ad Y e spie visive rivestiti internamente in PFA

INDICE

• Filtro ad Y in acciaio rivestiti in PFA con cartuccia e retina in PTFE

D3-72

• Spie visive in acciaio rivestite in PFA

vista precedente

FILTRI AD Y IN ACCIAIO RIVESTITI IN PFA CON CARTUCCIA E RETINA IN PTFE

Fornitura Standard

Design:

ANSI B16,5 Cl. 150

Flange: Fisse

Range Misura:

DN 25 - DN 200

Fino a DN 150 PN 16

Fino a DN 250 PN 10

Parti metalliche:

corpo: P245 GH EN 10216-2 flange: P235 GH EN 1092-1

Rivestimento interno:

← PFA

Rivestimento cartuccia filtro:

♠ PTFE

Varianti

Design:

per diametri grandi previsti pezzi in più parti

Parti metalliche:

Acciaio Inox 304L/316L

Acc. per basse temp. P275NL

Rivestimento interno:

TFE antistatico

PFA antistatico

Rivestimento interno:

PFA vergine - ASTM D-3307 tipo II

Filtro a Y in versione antistatica

Finitura standard

Omologazioni e Certificazioni

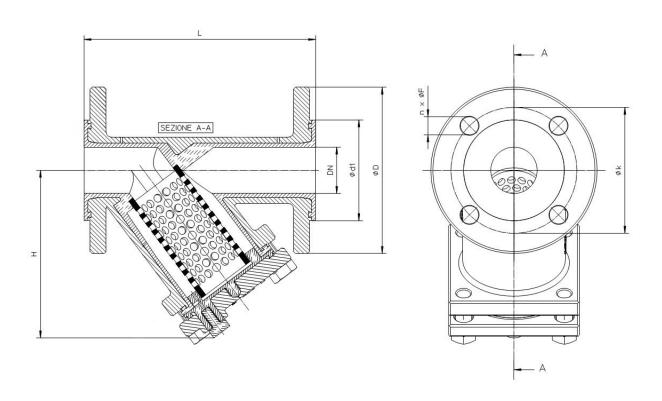
Qualità e collaudi speciali

Servizi di ingegnieria

Forniture speciali

Parti metalliche Inox 304/316L

Finitura Superfici



DIFLINE

☐ FILTRI AD Y IN ACCIAIO RIVESTITI IN PFA CON CARTUCCIA E RETINA IN PTFE

Maglia filtrante standard in PTFE da:

 $250 \, \mu \text{m}$ (60 mesh), $300 \, \mu \text{m}$ (50 mesh), 420 μ m (40 mesh), 850 μ m (20 mesh), 1000 μ m (18 mesh), 2000 μ m (10 mesh); altre dimensioni sono disponibili a richiesta. Protezione esterna con vernice poliuretanica a due componenti RAL 5005.

Tabella dimensionale

DN	L [mm]	H [mm]	D [mm]	k [mm]	d1 [mm]	n x ØF [num x mm]
1"	160	125	107,9	79,4	51	4 x 15,9
1 ½"	200	145	127	98,4	73	4 x 15,9
2"	230	165	152,4	120,6	92	4 x 19
3"	310	210	190,5	152,4	127	8 x 19
4"	350	310	228,6	190,5	157	8 x 19
6"	480	370	279,4	241,3	216	8 x 22,2
8"	600	580	342,9	298,4	270	8 x 22,2

☐ FILTRI AD Y IN ACCIAIO RIVESTITI IN PFA CON CARTUCCIA E RETINA IN PTFE

Specifiche Tecniche dei prodotti Difline

Dimensioni tubi e flange secondo ASME B16.5 Classe 150

Dimensioni raccordi secondo ASME B16.5 Classe 150

Condizioni operative

Forza Serraggio

Finitura Marcatura Imballo

Tabella delle resistenze chimiche dei materiali*

Omologazioni e Certificazioni

Qualità e collaudi speciali

Servizi di ingegnieria

Forniture speciali

Parti metalliche Inox 304/316L

Finitura Superfici

vista precedente

DIFLINE

SPIE VISIVE IN ACCIAIO RIVESTITE IN PFA DESIGN ASME B16.5 CLASSE 150

Fornitura Standard

Design:

ASME/ANSI B16.5 Classe 150

Flange: 2 flange fisse

Range Misura:

DN 1" - DN 16"

Parti metalliche:

corpo: ASTM A 106 GR. B

flange: ASTM A 105 vetro: DIN 7080

Cast Steel: ASTM A216

Grade WCB

Rivestimento interno:

← PFA

Guarnizione: Dlflex

Varianti

Design:

ASME/ANSI B16.5 Classe 300

Parti metalliche:

Acciaio Inox 304L/316L

Rivestimento interno:

→ PFA antistatico

Materiali 1 PTFE ASTM D-4894 2 ASTM A 106 GR. B / ASTM A 216 WCB 3 ASTM A 105 / ASTM A 216 GR. WCB 4 Vetro DIN 7080 / Sight glass **5** Diflex

Fornibili a richiesta

Omologazioni e Certificazioni

Qualità e collaudi speciali

Servizi di ingegnieria

Forniture speciali

Parti metalliche Inox 304/316L

Finitura Superfici

vista precedente

■ SPIE VISIVE IN ACCIAIO RIVESTITE IN PFA DESIGN ASME B16.5 CLASSE 150

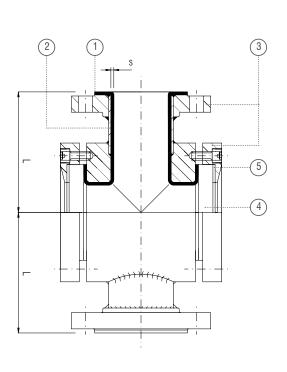


Tabella dimensionale

DN	L mm	s ± 10% mm	Peso ca. kg
1"	89	3,5	3,8
1 1/4"	95	3,5	4,8
1 1/2"	102	4,0	6,3
2 "	114	4,0	10,0
2 1/2"	127	4,5	14,5
3"	140	4,5	23,0
4"	165	5	39,0
5"	190	6	59
6"	203	6,0	83
8"	229	7	122
10"	280	7,5	166
12"	305	8	232
14"	357	8	320
16"	406	8	380

Specifiche Tecniche dei prodotti Difline

Dimensioni tubi e flange secondo ASME B16.5 Classe 150

Dimensioni raccordi secondo ASME B16.5 Classe 150

Condizioni operative

Forza Serraggio

Finitura Marcatura Imballo

Tabella delle resistenze chimiche dei materiali*

CONDIZIONI DI FORNITURA STANDARD E SPECIALI

INDICE

• Omologazioni e certificazioni

A4-78

• Qualità e collaudi speciali

• Servizi di ingegneria

• Forniture speciali

• Parti metalliche Inox 304L/316L

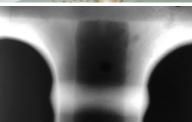
• Finitura superfici

vista precedente

OMOLOGAZIONI E CERTIFICAZIONI

Azienda certificata

- ISO 9001:2008
- PED



QUALITÀ E COLLAUDI SPECIALI

Collaudi:

- Idraulico
- Pneumatico
- Scintillografico
- Visivo dimensionale
- Spessimetrico
- Radiografico (con Negativoscopio)
- Magnetoscopico
- Liquidi penetranti
- PMI (solo inox)
- Test di passivazione (solo inox)
- Holiday test su coating
- Dry Film Thickness

vista precedente

Svolgiamo **servizi di ingegneria dettagliati**, con **disegni tecnici** e **lista dei materiali** per impianti, che prevedono l'utilizzo di materiali in fluoropolimeri e acciaio.

Svolgiamo servizi di misurazione e disegno dall'impianto preliminare alla fornitura definitiva, con lista dei materiali e relativi impianti chimici, con certificazioni CE. Forniamo pacchetti completi di valvole.

Presso il nostro stabilimento di Carobbio degli Angeli elaboriamo i progetti ingegneristici, eseguiamo la lavorazione dei rivestimenti, e produciamo serbatoi e colonne in fluoropolimeri e acciaio, disegnate con **tecnologia 3D** e collaudate secondo certificazioni CE e PED.

Offriamo servizio di produzione di tubi flessibili per l'industria, con caratteristiche e dimensioni a richiesta. Possiamo sviluppare con un esclusivo servizio di ingegneria anche di corpi metallici da predisporre al rivestimento con fluoropolimeri e polipropilene. Inoltre facciamo forniture di pezzi stampati in fusione e a cera persa con tolleranze 00.

Per l'acciaio al carbonio la tolleranza è di :00.

Siamo fortemente stimolati ad accettare sfide di costi e ingegneria che riguardano

rivestimenti in fluoropolimeri e polipropilene di particolari metallici.

Il costo del servizio di ingegneria è di 50 euro/ora e il costo delle fusioni

è di circa 3.5 per la cera persa con tolleranza di : 00.

Siamo in grado di affrontare ogni problema con

professionalità e esperienza.

I nostri servizi offrono la migliore qualità a prezzi accessibili.

- Rilievi in campo
- Ingegneria di dettaglio
- **Stress Analysis**
- Assistenza al montaggio
- Sviluppo distinte materiali da sketch
- Progettazione staffaggi

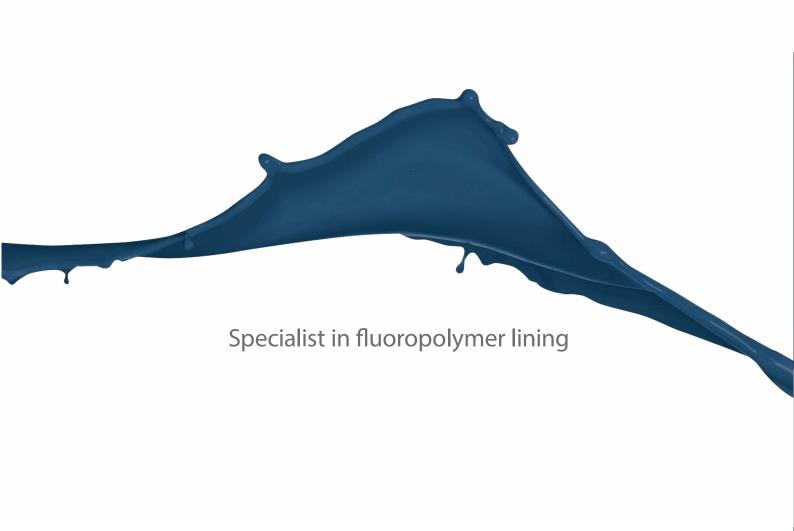
vista precedente

FORNITURE SPECIALI

vista precedente

PARTI METALLICHE INOX 304L/316L

Verniciatura personalizzata a richiesta



DIFLON Technology S.r.l.
Sede legale:
Via Bartolini, 39 - 20155 Milano
Sede operativa:
Via Umberto I, 73
24054 Calcio (Bg)

Tel. +39 (0) 35 4491137 Fax +39 (0) 35 4491419 www.diflon.it - info@diflon.it

Chemical Resistence Materials

Resistenza chimica dei materiali

Panoramica generale sulla resistenza chimica dei materiali plastici, elastici e metallici presenti sul catalogo Diflon.

Potete richiedere un servizio di consulenza personalizzata per tutti i tipi di prodotti trattati , il nostro ufficio tecnico sarà lieto di rispondervi

Cliccando sulla copertina dei cataloghi si accede direttamente all'argomento di'interesse.

▶ Phone: (+39) 035 4491137

Resistenza chimica dei materiali

DIFLON SERVICE

Tabella delle resistenze chimiche dei materiali*

		NATURAL RUBBER NR	SBR SBR	CHLOROPRENE CH	NITRILE NBR	BUTYL IIR	hypalon® CSM	EPDM EPDM	EPR EPM	silicone VMQ	viton® FKM	CROSS-LINKED POLYETHYLENE XLPE	ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENE UHMWPE	politetrafluorotilene PTFE	DIFLEX®	perfluorocoxi PFA	Acciaio Inox 304 304SS	Acciaio Inox 316L 316LSS
Acetic acid, dulu	uite, 10%	В	С	С	С	Α	С	А	Α	В	В	А	А	А	А	А	В	AB
Acetic acid g	glacial	С	Χ	Χ	Χ	В	С	В	А	С	Χ	А	А	А	А	А		
Acetic acid an	hydride	С	С	В	В	В	А	I	В	- 1	Χ	А	А	А	Α	А	AB	А
Acetone	9	В	С	В	Χ	А	В	А	А	Χ	Χ	А	А	А	А	А	А	А
Acetylen	10	А	Α	В	А	Α	В	А	А	С	А	А	А	А	А	А	А	А
Air	68°F (20°C)	А	Α	А	А	А	А	А	А	А	А	А	А	А	А	А		
Air	150°F (65°C)	А	Α	А	Α	Α	А	А	А	Α	- 1	А	А	А	Α	А		
Aluminium chloride	150°F (65°C)	А	Α	А	А	Α	А	А	А	А	А	А	А	А	А	А	Χ	B/X
Aluminium fluoride	150°F (65°C)	А	Α	А	Α	Α	А	А	Α	В	- 1	А	А	А	А	А	Χ	C/X
Aluminium sulfate	150°F (65°C)	А	Α	А	А	Α	А	А	А	А	А	А	А	А	А	А	AB	А
Alums	150°F (65°C)	А	Α	А	Α	Α	А	А	А	Α	- 1	А	А	А	Α	А	В	AB
Ammonia gas, a	nhydrous	А	А	А	А	А	А	А	А	- 1	Χ	А	А	А	А	А	А	А
Ammonia 10%wat	ter solution	В	В	В	Α	Α	А	Α	Α	Α	Α	А	А	А	А	А	А	А
Ammonia 30%wat	ter solution	В	В	В	Α	Α	В	А	Α	С	А	А	А	А	А	А	А	А
Ammonium cl	hloride	А	Α	А	Α	Α	А	А	Α	С	А	А	А	А	А	А	AB	AB
Ammonium hy	vdroxide	С	В	В	В	Α	А	А	А	С	В	А	А	А	А	А	А	А
Ammonium r	nitrate	А	Α	А	Α	Α	А	А	Α	Α	А	А	А	А	А	А	А	Α
Ammonium phospha	ite monobasic	А	Α	А	А	Α	А	А	Α	Α	А	А	А	А	А	А	А	А
Ammonium phospl	hate dibasic	А	Α	А	Α	Α	А	А	Α	Α	Α	А	А	А	А	А	Α	А
Ammonium phospl	hate tribasic	А	Α	А	Α	Α	А	А	Α	Α	А	А	А	А	А	А	А	А
Ammonium s	sulfate	А	Α	А	Α	Α	А	Α	Α	Α	А	А	А	А	А	А	Α	А
Amyl acet	ate	В	Χ	Χ	Χ	В	Χ	А	В	Χ	Χ	А	А	А	А	А	А	А
Amyl alco	hol	А	Α	А	Α	Α	А	А	Α	Χ	А	А	А	А	А	А	А	А
Aniline, Anili	ine oil	Χ	Χ	С	Χ	Α	Χ	С	В	Χ	А	А	А	А	А	А	А	А
Aniline, dy	yes	В	В	В	Χ	Α	В	С	А	Χ	В	А	А	А	А	А	А	А
Asphalt	t	Χ	Χ	В	В	Χ	В	Χ	Χ		А	А	А	А	А	А	А	А

Legenda

A = Resistenza Buona;

B = Resistenza Abbastanza

C = Resistenza Mediocre;

X = Non Adatta;

I = Informazioni Insufficienti

Tabella delle resistenze chimiche dei materiali*

Resistenza chimica dei materiali

DIFLON SERVICE

		NATURAL RUBBER NR	SBR SBR	CHLOROPRENE CH	NITRILE NBR	BUTYL IIR	hypalon® CSM	EPDM EPDM	EPR EPM	silicone VMQ	viton® FKM	CROSS-LINKED POLYETHYLENE XLPE	ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENE UHMWPE	politetrafluorotilene PTFE	DIFLEX®	perfluorocoxi PFA	Acciaio Inox 304 304SS	Acciaio Inox 316L 316LSS
Barium chloride	150°F (65°C)	Α	Α	А	Α	А	А	Α	А	Α	А	А	А	А	А	А	AB	А
Barium hydroxide	150°F (65°C)	А	А	А	Α	А	А	А	Α	Α	А	А	А	А	А	А	AB	А
Barium sulfide	150°F (65°C)	Α	Α	А	Α	Α	Α	Α	Α	Α	А	А	А	А	А	А	AB	AB
Beer		А	А	А	Α	А	А	А	А	А	А	А	А	А	А	А	А	А
Beet sugar li	iquors	А	Α	А	А	А	А	Α	Α	Α	А	А	А	А	А	А	Α	А
Benzene, Be	enzol	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	А	А	А	А	А	А	А	А
Benzine, petrole	eum ether	-	- 1	I	-	- 1	I	- 1	I	Χ	А	I	В	А	А	А	Α	А
Benzine, petroleu	m naphtha	Χ	Χ	С	Α	Χ	В	Χ	Χ	Χ	А	А	В	А	А	А	А	А
Black sulfate	liquor	А	Α	А	Α	Α	Α	Α	Α	Α	- 1	А	А	А	А	А	А	AB
Blast furnace	e gas	С	С	А	С	С	С	С	С	А	А	А	А	А	А	А		
Borax		А	Α	А	А	Α	А	Α	Α	В	А	А	А	А	А	А	Α	А
Boric aci	id	А	Α	А	А	А	А	А	Α	Α	А	А	А	А	А	А	А	А
Bromine	е	Χ	Χ	Χ	Χ	Χ	С	Χ	Χ	Χ	А	Χ	Χ	А	А	А	NR	NR
Butane		Χ	Χ	А	А	Χ	А	Χ	Χ	Χ	А	А	А	А	А	А	А	А
Butyl acet	tate	Χ	Χ	Χ	Χ	В	Χ	В	В	Χ	Χ	А	А	А	А	А	В	А
Butyl alcohol,	Butanol	А	А	А	А	А	А	А	А	С	А	А	А	А	А	А	А	А
Calcium bis	ulfate	С	С	А	Α	В	А	В	Α	С	А	А	А	А	А	А	В	А
Calcium chl	loride	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	AB	В
Calcium hydi	roxide	А	Α	А	Α	Α	А	Α	Α	Α	А	А	А	А	А	А	AB	AB
Calcium hypod	chlorite	Χ	Χ	Χ	Χ	А	В	А	А	С	А	А	А	А	А	А	Χ	AB
Caliche liqu	uors	Α	Α	А	Α	Α	А	Α	Α	В	А	А	А	А	А	А	Α	А
Cane sugar li	iquors	А	А	А	А	А	А	Α	А	А	А	А	А	А	А	А	А	А
Carbolic acid,	phenol	С	С	С	С	С	С	Α	А	Χ	А	А	А	А	А	А	А	А
Carbon dioxide,	, dry-wet	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А
Carbon disu	ulfide	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	А	С	С	А	А	А	Α	В
Carbon monoxide	140°F (60°C)	С	С	С	С	С	В	С	Α	А	Α	А	А	А	А	А	А	А

Legenda

A = Resistenza Buona; B = Resistenza Abbastanza

C = Resistenza Mediocre;

X = Non Adatta;

I = Informazioni Insufficienti.

▶ Phone: (+39) 035 4491137

Resistenza chimica dei materiali

DIFLON SERVICE

Tabella delle resistenze chimiche dei materiali*

	NATURAL RUBBER NR	SBR SBR	CHLOROPRENE CH	NITRILE NBR	BUTYL IIR	hypalon® CSM	EPDM EPDM	EPR EPM	silicone VMQ	viton® FKM	CROSS-LINKED POLYETHYLENE XLPE	ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENE UHMWPE	politetrafluorotilene PTFE	DIFLEX®	perfluorocoxi PFA	Acciaio Inox 304 304SS	Acciaio Inox 316L 316LSS
Carbon tetrachloride	Χ	Χ	Χ	С	Χ	Χ	Χ	Χ	Χ	Α	А	С	А	А	А	А	А
Castor oil	А	Α	А	Α	А	А	А	А	А	А	А	А	А	А	А	А	А
Cellosolve acetate	В	В	Χ	Χ	А	- 1	Α	Α	Χ	Χ	А	А	А	А	А	А	А
CFC-12	Χ	Χ	А	А	В	- 1	В	С	- 1	С	I	I	А	А	А		
China wood oil, tung oil	Χ	Χ	В	Α	А	В	А	С	Χ	Α	А	А	А	А	А	А	А
Chlorine, dry/wet	Χ	Χ	Χ	Χ	Χ	С	Χ	Χ	Χ	В	С	Χ	А	А	А	А	AB
Chlorinated solvents	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Α	А	В	А	А	А	AB	AC
Chloroacetic acid	Χ	С	С	С	Χ	А	- 1	А	- 1	Χ	А	А	А	А	А	AB	А
Chlorosulfonic acid	Χ	Χ	С	С	Χ	Χ	Χ	Χ	Χ	Χ	С	Χ	А	А	А	В	В
Chromic acid	Χ	Χ	Χ	Χ	С	А	I	I	С	А	А	С	А	А	А	С	ВС
Citric acid	А	Α	А	В	А	А	Α	Α	А	Α	А	А	А	А	А	А	AB
Coke oven gas	Χ	Χ	Χ	Χ	Χ	А	- 1	- 1	В	А	А	Χ	А	А	А	А	А
Copper chloride 150°F (65°C)	С	Α	В	Α	Α	В	А	Α	А	Α	А	А	А	А	А	Χ	Χ
Copper sulfate 150°F (65°C)	С	Α	А	А	В	А	А	А	А	А	А	А	А	А	А	А	А
Corn oil	Χ	С	В	Α	Α	В	С	С	А	Α	А	А	А	А	А	А	А
Cottonseed oil	Χ	С	В	А	А	В	С	С	А	А	А	А	А	А	А	А	А
Creosote, coal tar	Χ	Χ	В	Α	Χ	В	Χ	Χ	С	Α	А	А	А	А	А	А	А
Creosote, coal tar wood	Χ	Χ	В	Α	Χ	I	Χ	Χ	Χ	А	А	А	А	А	А	Α	AB
Creosols, cresylic acid	С	Χ	Χ	С	С	В	Χ	Χ	I	Α	А	В	А	А	А	Α	Α
Dichlorobenzene	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	А	Χ	С	А	А	А	А	А
Dichloroethylene	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	А	С	Χ	А	А	А	А	А
Diesel fuel	Χ	Χ	С	А	Χ	В	Χ	Χ	Χ	А	В	В	А	А	А	Α	Α
Diethanolamine 20%	С	Χ	I	I	А	Χ	А	Α	Χ	Χ	А	А	А	А	А	Α	А
Diethylamine	В	В	В	С	В	С	В	В	В	Χ	А	А	А	А	А	Α	Α
Diisopropylamine	В	I	I	В	I	С	I	I	Ι	I	А	А	А	А	А	Α	Α
Dioctylphthalate	Χ	Χ	Χ	Χ	В	Χ	В	А	Χ	Α	А	А	А	А	А	Α	А

Legenda

A = Resistenza Buona;

B = Resistenza Abbastanza

C = Resistenza Mediocre;

X = Non Adatta;

I = Informazioni Insufficienti

► Mail: info@diflon.it

DIFLON SERVICE

Resistenza chimica dei materiali

Tabella delle resistenze chimiche dei materiali*

		NATURAL RUBBER NR	SBR SBR	CHLOROPRENE CH	NITRILE NBR	BUTYL IIR	hypalon® CSM	EPDM EPDM	EPR EPM	silicone VMQ	viton® FKM	CROSS-LINKED POLYETHYLENE XLPE	ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENE UHMWPE	politetrafluorotilene PTFE	DIFLEX®	perfluorocoxi PFA	Acciaio Inox 304 304SS	Acciaio Inox 316L 316LSS	
Ethers		Χ	Χ	Χ	Χ	Χ	Χ	С	В	Χ	Χ	А	В	А	А	А	Α	Α	
Ethyl acetate		Χ	Χ	Χ	Χ	В	Χ	В	А	В	Χ	А	А	А	А	А	Α	А	
Ethyl alcohol		А	Α	А	А	А	А	А	А	А	А	А	А	А	А	А	Α	Α	
Ethyl cellulose)	В	В	В	В	В		В	В	С	Χ	А	А	А	А	А	А	AB	
Ethyl chloride		Χ	Χ	Χ	Χ	В	Χ	С	С	С	А	А	С	А	А	А	Α	Α	
Ethyl glycol		А	А	А	А	А	А	А	А	А	А	А	А	А	А	А			
Ferric chloride 1	150°F (65°C)	А	Α	А	А	А	А	А	А	А	А	А	А	А	А	А	Χ	Χ	
Ferric sulfate 1	150°F (65°C)	А	А	А	А	А	А	А	А	В	А	А	А	А	А	А	AB	Α	
Formaldehyde	;	В	В	В	С	А	А	А	А	В	Χ	А	А	А	А	А			
Formic acid		А	А	С	В	А	А	А	А	С	Χ	А	А	А	А	А	В	В	
Fuel oil		Χ	Χ	А	А	Χ	В	Χ	Χ	Χ	А	А	А	А	А	А	Α	Α	
Furfural		Χ	С	С	Χ	А	В	С	В	Χ	Χ	А	- 1	А	А	А	Χ	А	
Gasoline, unlead	led	Χ	Χ	Χ	А	Χ	С	Χ	Χ	Χ	А	А	В	А	А	А	Α	А	
Gasoline + MTE	BE	Χ	Χ	Χ	А	Χ	С	Χ	Χ	Χ	А	А	В	А	А	А	А	А	
Gasoline Hi Test + I	MTBE	Χ	Χ	Χ	А	Χ	С	Χ	Χ	Χ	А	А	В	А	А	А	Α	Α	
Gelatin		А	Α	А	А	А	А	А	А	Α	А	А	А	А	А	А	Α	Α	
Glucose		А	Α	А	А	А	А	А	А	А	А	А	А	А	А	А	Α	Α	
Glue		В	В	А	А	В	А	А	А	А	А	А	А	А	А	А	Α	Α	
Glycerine, glycer	rol	А	Α	А	А	А	А	А	А	Α	Α	А	А	А	А	А	Α	Α	
Green sulfate liqu	uor	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	
HFC-134A		В	Χ	А	А	А	В	А	А	1	Χ	А	I	А	А	А			Legenda
Hydraulic fluids: Petr	roleum	Χ	Χ	В	А	Χ	В	Χ	Χ	С	А	- 1	А	А	А	А	А	А	A = Resistenza Buona;
Hydraulic fluids Phosphate ester al		Χ	Χ	С	Χ	А	Χ	А	А	Χ	I	I	I	А	А	А	А	А	B = Resistenza Abbasta Buona; C = Resistenza Medioci
Hydraulic fluids: Phosphat	te ester aryl	Χ	Χ	Χ	Χ	С	Χ	С	С	Χ	- 1	I	I	А	А	А			X = Non Adatta;
Hydraulic fluids Phosphate ester ble		Χ	Χ	Χ	Χ	Χ	Χ	С	С	Χ	А	I	I	А	А	А			I = Informazioni Insuffic
Hydraulic fluids: Silica	ate ester	Χ	Χ	С	С	Χ	С	Χ	Χ	Χ	А	I	I	А	А	А			

▶ Phone: (+39) 035 4491137

Resistenza chimica dei materiali

DIFLON SERVICE

Tabella delle resistenze chimiche dei materiali*

	NATURAL RUBBER NR	SBR SBR	CHLOROPRENE CH	NITRILE NBR	BUTYL IIR	hypalon® CSM	EPDM EPDM	EPR EPM	silicone VMQ	viton® FKM	CROSS-LINKED POLYETHYLENE XLPE	ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENE UHMWPE	politetrafluorotilene PTFE	DIFLEX®	perfluorocoxi PFA	Acciaio Inox 304 304SS	Acciaio Inox 316L 316LSS	
Hydraulic fluids: Water glycol	А	А	А	А	А	А	А	Α	А	А	I	А	А	А	А	А	А	
Hydrobromic acid	С	Χ	С	С	А	А	А	А	Χ	А	1	А	А	А	А	Χ	Χ	
Hydrochloric acid	В	В	В	С	В	В	В	Α	Χ	А	А	А	А	А	А	Χ	Χ	
Hydrocyanic acid	В	В	С	В	С	А	С	В	В	А	А	А	А	А	А	AB	А	
Hydrofluoric acid	Χ	Χ	Χ	Χ	С	А	В	В	Χ	Χ	А	В	А	А	А	В	AB	
Hydrofluosilicic acid	А	В	В	В	А		А	А	- 1	А	1	А	А	А	А	Χ	AB	
Hydrogen gas 140°F (60°C)	В	А	А	А	А	- 1	Α	Α	С	А	А	А	А	А	А	А	А	
Hydrogen peroxide	Χ	Χ	С	С	С	С	С	В	А	А	I	С	А	А	А	AB	А	
Hydrogen sulfide, dry	С	С	В	С	А	Α	Α	Α	Χ	Χ	А	А	А	А	А	AC	А	
Hydrogen sulfide, wet	С	С	В	С	А	А	А	А	Χ	Χ	А	А	А	А	А	А	А	
Isobutyl alcohol	А	А	А	В	А	Α	А	А	А	А	А	А	А	А	А	А	А	
Isopropyl alcohol	А	А	А	В	А	А	А	А	А	А	А	А	А	А	А	А	А	
Isooctane	Χ	Χ	В	Α	Χ	Α	Χ	Χ	Χ	Α	А	А	А	Α	А	Α	А	
Kerosene	Χ	Χ	В	А	Χ	С	Χ	Χ	Χ	А	А	А	А	А	А	А	А	
Lacquers	Χ	Χ	Χ	Χ	С	Χ	Χ	Χ	Χ	Χ	А	В	А	Α	А	Α	А	
Lacquers solvents	Χ	Χ	Χ	Χ	С	Χ	Χ	Χ	Χ	Χ	А	В	А	А	А	А	А	
Lactic acid	С	С	С	С	С	А	С	В	Α	Α	А	А	А	А	А	В	Α	
Linseed oil	С	С	В	А	А	А	А	В	А	А	А	А	А	А	А	А	А	
Lubricating oil, crude	Χ	Χ	В	Α	Χ	В	Χ	Χ	С	Α	А	А	А	А	А	Α	А	
Lubricating oil, refined	Χ	Χ	В	Α	Χ	В	Χ	Χ	С	А	А	А	А	А	А	А	А	
Magnesium chloride 150°F (65°C)	А	А	А	Α	А	А	Α	Α	А	А	А	А	А	А	А	Χ	А	Leg
Magnesium hydroxide 150°F (65°C)	А	В	В	В	А	А	Α	Α	В	А	А	А	А	А	А	А	А	A = B =
Magnesium sulfate 150°F (65°C)	А	А	А	Α	Α	А	Α	А	А	Α	А	А	А	Α	А	Α	А	Buo
Mercuric chloride	В	В	С	В	А	А	А	А	А	А	А	А	А	А	А	Χ	Χ	C = X =
Mercury	А	А	А	Α	А	А	Α	Α	А	А	А	А	А	А	А	А	А	l =
Methyl alcohol, methanol	А	Α	А	Α	Α	А	А	А	Α	В	А	А	А	Α	А	А	Α	

stenza Buona;

stenza Abbastanza

stenza Mediocre;

nazioni Insufficienti.

Phone: (+39) 035 4491137

Resistenza chimica dei materiali

DIFLON SERVICE

Tabella delle resistenze chimiche dei materiali*

	NATURAL RUBBER NR	SBR SBR	CHLOROPRENE CH	NITRILE NBR	BUTYL IIR	hypalon®	EPDM EPDM	EPR EPM	silicone VMQ	viton® FKM	CROSS-LINKED POLYETHYLENE XLPE	ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENE UHMWPE	politetrafluorotilene PTFE	DIFLEX®	perfluorocoxi PFA	Acciaio Inox 304 304SS	Acciaio Inox 316L 316LSS
Methyl chloride	Χ	Χ	Χ	Χ	С	Χ	Χ	С	Χ	В	С	С	А	А	А	Α	А
Methyl ethyl ketone	Χ	Χ	Χ	Χ	В	Χ	А	А	Χ	Χ	А	А	А	А	А	А	А
Methyl isopropyl ketone	Χ	Χ	Χ	Χ	В	Χ	С	С	С	Χ	А	А	А	А	А	А	А
Milk	А	Α	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А
MTBE	1	-	I	- 1	- 1	I	- 1	- 1	- 1	Χ	А	I	1		I		
Mineral oils	Χ	Χ	В	А	Χ	В	Χ	Χ	А	А	А	А	А	А	А	А	А
Natural gas	С	С	А	Α	Χ	А	Χ	Χ	С	А	А	А	А	А	А	Α	А
Nickel chloride 150°F (65°C)	А	Α	А	А	А	А	А	Α	А	А	А	А	А	А	А	В	В
Nickel sulfate 150°F (65°C)	А	Α	А	Α	Α	А	А	Α	Α	А	А	А	А	А	А	Α	А
Nitric acid, crude	Χ	Χ	Χ	Χ	Χ	С	Χ	Χ	Χ	В	Χ	I	А	А	А	А	А
Nitric acid, diluted 10%	Χ	Χ	В	Χ	В	А	С	А	С	Α	А	А	А	А	А	Χ	Χ
Nitric acid, concentrated 70%	Χ	Χ	Χ	Χ	С	С	Χ	С	Χ	В	С	Χ	А	А	А		
Nitrobenzene	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	С	В	А	А	А	А	А	Α	А
Oleic acid	Χ	Χ	С	С	В	В	В	С	Χ	В	А	А	А	А	А	А	А
Oleum	Χ	С	С	С	Χ	В	Χ	С	- 1	А	Χ	Χ	А	А	А		
Oxalic acid	В	С	В	В	А	А	А	А	В	А	А	А	А	А	А	А	А
Oxygen	В	С	А	С	Α		А	А	Χ	В	А	А	А	А	А	А	А
Palmitic acid	Χ	В	А	А	В	В	В	В	Χ	А	А	А	А	А	А	AB	А
Perchlorethylene	Χ	Χ	Χ	С	Χ	Χ	Χ	Χ	С	А	С	С	А	А	А	А	А
Petroleum oils and crude 200°F (95°C)	Χ	Χ	В	А	Χ	С	Χ	Х	Χ	В	С	Χ	А	А	А	А	А
Phosphoric acid, crude	С	С	С	С	С	А	В	Α	С	А	А	А	А	А	А	Χ	Χ
Phosphoric acid, pure 45%	С	С	С	С	С	А	В	А	С	А	А	А	А	А	А	А	А
Picric acid, molten	С	С	С	С	С	- 1	- 1	- 1	Χ	А	С	Χ	А	А	А	А	А
Picric acid, water solution	А	С	В	В	Α	А	I	I	I	А	А	А	А	А	А	Χ	Χ
Potassium chlorite	А	Α	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А
Potassium cyanide	А	Α	А	Α	А	А	А	А	А	А	A	А	А	А	А	AB	AB

Legenda

A = Resistenza Buona; B = Resistenza Abbastanza

C = Resistenza Mediocre; X = Non Adatta;

I = Informazioni Insufficienti.

Resistenza chimica dei materiali

▶ Phone: (+39) 035 4491137

DIFLON SERVICE

Tabella delle resistenze chimiche dei materiali*

		NATURAL RUBBER NR	SBR SBR	CHLOROPRENE CH	NITRILE NBR	BUTYL IIR	hypalon® CSM	EPDM EPDM	EPR EPM	silicone VMQ	viton® FKM	CROSS-LINKED POLYETHYLENE XLPE	ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENE UHMWPE	politetrafluorotilene PTFE	DIFLEX®	perfluorocoxi PFA	Acciaio Inox 304 304SS	Acciaio Inox 316L 316LSS
Sodium cyani	ide	А	Α	А	А	А	А	Α	А	А	А	А	А	А	А	А	Α	А
Sodium hydroxide	to 50% at 140°F	В	В	В	В	А	В	А	А	А	А	А	А	А	А	А	А	А
Sodium hypoch	nlorite	Χ	Χ	С	С	Α	В	А	А	В	А	А	С	А	А	А	NR	NR
Sodium metapho:	sphate	А	Α	С	А	А	В	А	А	А	А	А	А	А	А	А	А	А
Sodium nitra	ate	В	В	В	В	Α	А	А	Α	Χ	А	А	А	А	А	А	Α	А
Sodium perbo	rate	В	В	В	В	А	А	А	А	В	А	А	А	А	А	А	А	А
Sodium perox	kide	В	В	В	В	Α	А	Α	А	С	А	А	С	А	А	А	А	А
Sodium phosphate, n	monobasic	А	В	В	В	А	А	Α	А	Χ	А	А	А	А	А	А	А	А
Sodium phosphate,	, dibasic	А	В	В	В	Α	А	Α	А	Χ	А	А	А	А	А	А	А	А
Sodium phosphate,	, tribasic	А	В	В	В	А	А	Α	А	Χ	А	А	А	А	А	А	AB	А
Sodium silica	ate	А	Α	А	А	А	А	Α	А	А	А	А	А	А	А	А	А	А
Sodium sulfa	ate	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А
Sodium sulfic	ide	А	Α	А	Α	А	А	Α	Α	А	А	А	А	А	А	А	NR	AB
Sodium thiosulfate	e, "hypo"	А	Α	А	А	А	А	Α	А	-	А	А	А	А	А	А	А	А
Soybean oil	il	Χ	С	В	Α	А	А	Α	С	А	А	А	А	А	А	А	А	А
Stannic chlori	ride	А	Α	А	А	В	А	В	А	В	А	А	А	А	А	А	Χ	Χ
Steam	450°F (230°C)	Χ	Χ	Χ	Χ	В	Χ	В	В	I	Χ	Χ	Χ	А	А	А	А	А
Stearic acid	d	Χ	Χ	С	В	В	С	В	А	А	А	А	А	А	А	А	А	AB
Sulfur		Χ	Χ	А	Χ	Α	А	А	Α	В	А	А	А	А	А	А	Α	А
Sulfur chloric	de	Χ	Χ	С	С	Χ	А	Χ	Χ	С	А	А	I	А	А	А	В	В
Sulfur dioxide, dry (GAS)	С	С	С	С	С	А	С	В	В	В	А	А	А	А	А	А	А	А
Sulfur trioxide, dry	Χ	С	С	С	С	В	С	В	В	А	Χ	Χ	А	А	А	А	AB	В
Sulfuric acid, 10%	С	С	В	С	А	А	А	А	Χ	А	А	А	А	А	А	А	А	А
Sulfuric acid, 11% - 75%	X	X	X	X	В	А	С	А	Χ	А	А	А	А	А	А	А	А	А

Tabella delle resistenze chimiche dei materiali*

		NATURAL RUBBER NR	SBR SBR	CHLOROPRENE CH	NITRILE NBR	BUTYL IIR	hypalon® CSM	EPDM EPDM	EPR EPM	silicone VMQ	viton® FKM	CROSS-LINKED POLYETHYLENE XLPE	ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENE UHMWPE	politetrafluorotilene PTFE	DIFLEX®	perfluorocoxi PFA	Acciaio Inox 304 304SS	Acciaio Inox 316L 316LSS	
Sulfurous acid	С	С	С	С	С	А	С	В	Χ	В	А	А	А	А	А	А	AC	В	
Tannic acid	А	С	А	С	Α	А	А	А	В	А	А	А	А	A	А	А	AB	А	
Tar	Χ	Χ	С	С	Χ	С	Χ	Χ	В	А	Χ		А	А	А	А	Α	А	
Tartaric acid	А	С	С	С	В	А	В	В	А	А	А	А	А	А	А	А	А	А	
Toluene, Toluol	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	А	С	С	А	А	А	А	Α	А	
Trichloroethylene	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	А	С	В	А	А	А	А	А	А	
Turpentine	Χ	Χ	Χ	В	Χ	Χ	Χ	Χ	Χ	А	А	В	А	А	А	А	Α	А	
Urea, water solution	А	I	А	А	А	А	А	А	А	- 1	А	А	А	А	А	А	А	А	
Vinegar	С	С	С	С	Α	Α	А	Α	А	А	А	А	А	А	А	А	Α	А	
Vinyl acetate	Χ	Χ	Χ	Χ	А	Χ	В	А	Χ	Χ	- 1	А	А	A	А	А	А	А	
Water, acid mine	А	А	В	А	Α	Α	А	Α	Α	А	А	А	А	А	Α	А	Α	А	
Water, fresh	А	А	В	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	Legenda
Water, distilled	А	А	В	А	А	А	А	А	А	А	А	А	А	А	Α	А	Α	А	A = Resis
Whiskey and wines	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	B = Resis Buona;
Xylene, xylol	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	А	С	С	А	А	А	А	А	А	C = Resis
Zinc chloride	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	NR	AB	X = Non A $I = Inform$
Zinc sulfate	В	В	Α	А	А	А	А	А	Α	А	А	А	А	А	А	А	Α	Α	

NOTA 1

*Le tabelle sono basate su test di laboratorio e su dati resi pubblici, e si ritiene siano accurate. Comunque devono essere utilizzate esclusivamente come guida indicativa in quanto non prendono in considerazione tutte le variabili che si incontrano nell'uso del prodotto, come ad esempio temperatura, concentrazione, pressione, durata dell'esposizione al fluido, stabilita' e possibili contaminazioni del fluido stesso.

Tutte le applicazioni devono essere sempre verificate; la parte a contatto utilizzata deve essere sempre testata con il prodotto chimico che deve convogliare.

Nota Bene: tutti i dati sono basati su test condotti a 20 °C (70 °F) se non diversamente specificato.

Chemical Resistence Materials

